

## Index

- A Analyzer, Polarization Apodizer Attenuators, Fiber-Optic Attenuators, Fiber-Optic, Variable
- **B** Beamsplitters Beamsplitters, Fiber-Optic Beam Expanders, Laser **Birefringent Filters**
- C Cables, Fiber-Optic Cables, Fiber-Optic, Delivery Circulators, Fiber-Optic Collimators, Laser Collimators, Pigtailed Collimators, Snap-On Combiners, Fiber-Optic Compensator, Soleil-Babinet Conditions, Terms & Coupling Lenses, Fiber-Optic
- D Delay Lines, FiberBench Delivery Cables, Fiber-Optic Depolarizers DetectorPorts
- E Etalons, Solid
- F Faraday Rotator Mirrors, pigtailed Faraday Rotators, Fiber-Optic Fiber to Fiber Isolators Fiber to Fiber Systems Fiber Isolators FiberBench FiberBench Delay Lines FiberBench Kits FiberBench Retrace Systems FiberBench Splitters, Variable FiberCables Fiber-Optic Attenuators Fiber-Optic Attenuators, Variable Fiber-Optic Beamsplitters Fiber-Optic Cables Fiber-Optic Circulators Fiber-Optic Collimators Fiber-Optic Coupling Lenses Fiber-Optic Delivery Cables Fiber-Optic Faraday Rotators Fiber-Optic Focusers Fiber-Optic Isolators Fiber-Optic Polarization Components Fiber-Optic Polarization Controller Fiber-Optic Polarization Rotators **Fiber-Optic Polarizers** Fiber-Optic Splitters, Variable Fiber-Optic Splitters/Combiners FiberPorts Fiberports, mounting Fiberport, interchangeable lenses Filters, Birefringent Filters, Neutral Density Focusers, Fiber-Optic Focusing Objectives, UV Focusing Objectives, YAG Fresnel Rhomb Isolators

Isolators, Fiber-Optic

| • 0C-11<br>• F0-15,26<br>• F0-15,26                                                                                      | L | Laser Bea<br>Laser Col<br>LaserPort                           |
|--------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------|
| • 0C-15 & following<br>• F0-13<br>• 0C-10,11                                                                             |   | Laser to I<br>Lenses<br>Lenses, A                             |
| <ul> <li>• 00-23</li> <li>• F0-9,42</li> <li>• F0-44</li> <li>• F0-53</li> <li>• 0C-10,11</li> <li>• F0-45,47</li> </ul> | М | Microsco<br>Microspo<br>MirrorPor<br>Mirrors, E<br>Mirrors, M |
| <ul> <li>F0-45,47</li> <li>F0-49</li> <li>0C-29</li> </ul>                                                               |   | Mirrors, F<br>Mounting                                        |
| Inside rear cover                                                                                                        | N | Neutral D                                                     |
| • F0-24<br>• F0-44<br>• 0C-25                                                                                            | Ŭ | Objective<br>Optical Is<br>Optical Pe                         |
| • F0-8                                                                                                                   | P | Pellin Bro<br>PM fibers                                       |
| • 0C-35<br>• F0-53<br>• F0-23                                                                                            |   | Polarizati<br>Polarizati<br>Polarizati                        |
| • F0-21<br>• F0-19                                                                                                       |   | Polarizati<br>Polarizati                                      |
| <ul> <li>FO-50 &amp; following</li> <li>FO-4 &amp; following</li> </ul>                                                  |   | Polarizati<br>Polarizati                                      |
| • F0-24<br>• F0-18                                                                                                       |   | Polarizati<br>Polarizati                                      |
| • F0-25                                                                                                                  |   | Polarizati                                                    |
| • F0-23<br>• F0-9,42                                                                                                     |   | Polarizers                                                    |
| <ul> <li>F0-15,26</li> <li>F0-15,26</li> </ul>                                                                           |   | Polarizing<br>Prisms                                          |
| <ul> <li>FO-13</li> <li>FO-9 42</li> </ul>                                                                               |   | Prisms, C<br>Purchase                                         |
| • F0-53                                                                                                                  | R | Retarder,                                                     |
| • F0-16,41                                                                                                               |   | Retarder,<br>Retarders                                        |
| • F0-44<br>• F0-23                                                                                                       |   | Retarders                                                     |
| <ul> <li>FO-47</li> <li>FO-50 &amp; following</li> </ul>                                                                 |   | Rotators,                                                     |
| • F0-35                                                                                                                  | S | SM Fiber                                                      |
| • 0C-26, IO-14                                                                                                           |   | Soleil-Ba                                                     |
| • F0-14,27<br>• F0-23                                                                                                    |   | Solid Etal<br>Splitters,                                      |
| • F0-49<br>• F0-6 36                                                                                                     |   | Splitters/                                                    |
| • F0-39                                                                                                                  | т | Terms &                                                       |
| • 0C-29                                                                                                                  |   | Tweakers                                                      |
| • 0C-33<br>• F0-47<br>• MS-3                                                                                             | v | Variable I<br>Variable I<br>Variable I                        |
| ◦ MS-5<br>● 0C-28                                                                                                        | W | Windows                                                       |
| <ul> <li>IO-1 &amp; following</li> <li>FO-21.50 &amp; following</li> </ul>                                               |   |                                                               |

K

• F0-31

| Kits, FiberBench                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Laser Beam Expanders<br>Laser Collimators<br>LaserPorts<br>Laser to Fiber Isolators<br>Lenses<br>Lenses, Achromatic<br>Lenses, Coupling, Fiber-Optic                                                                                                                                                                                                                                                                                                                                                                             |
| Microscope Objectives for VIS-NIR<br>Microspot Objectives for UV, YAG<br>MirrorPorts<br>Mirrors, Dielectric<br>Mirrors, Metallic<br>Mirrors, Faraday Rotator<br>Mounting the Fiberport                                                                                                                                                                                                                                                                                                                                           |
| Neutral Density Filters<br>Objectives, Microscope<br>Objectives, Reflective<br>Optical Isolators<br>Optical Power Delivery Cables                                                                                                                                                                                                                                                                                                                                                                                                |
| Pellin Broca prism<br>PM fibers<br>Polarization Analyzer<br>Polarization Components, Fiber-Optic<br>Polarization Controller, Fiber-Optic<br>Polarization Dependent Isolators<br>Polarization Independent Isolators<br>Polarization Measurements<br>Polarization Mode Disperser<br>Polarization Reference Standards<br>Polarization Rotators<br>Polarization Rotators, Fiber-Optic<br>Polarizers<br>Polarizers, Fiber-Optic<br>Polarizers, Fiber-Optic<br>Polarizing Beamsplitter<br>Prisms<br>Prisms, Coupling<br>Purchase Terms |
| Retarder, Variable<br>Retarder, Multiple<br>Retarders, Zero Order<br>Retarders, Fiber-Optic<br>Rotators, Polarization<br>Rotators, Polarization, Fiber-Optic                                                                                                                                                                                                                                                                                                                                                                     |
| SM Fibers<br>Snap-On Collimators<br>Soleil-Babinet Compensator<br>Solid Etalons<br>Splitters, Fiber-Optic, Variable<br>Splitters/Combiners, Fiber-Optic<br>Standards, Polarization Reference                                                                                                                                                                                                                                                                                                                                     |
| Terms & Conditions<br>Tweakers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Variable Fiber-Optic Attenuators<br>Variable Retarder                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Variable Delay Lines

• F0-18 • 0C-10,11 • 0C-10,11 • F0-7 • F0 22 OC-3 & following • 0C-7 • F0-16,41 • 0C-9 o MS-5 • F0-8 OC-16 & following • 0C-12 • F0-53 • F0-39 0C-33 • 0C-9 • MS-7 IO-1 & following • F0-44 • 0C-31 • F0-42 • F0-31 • F0-35 • F0-30 • F0-51 • F0-50 • F0-27 & following • F0-24 • F0-28 • 0C-26, IO-14 • 0C-26, IO-14 • 0C-22 & following • F0-14, 27 • 0C-20 OC-30 & following 0C-32 Inside rear cover 0C-29 • 0C-26 OC-27 & following • F0-15 • 0C-27, IO-15 IO-15 • F0-42 • F0-45. 47 0C-29 0C-35 • F0-23 • F0-49 • F0-28 Inside rear cover • F0-12 • F0-15,26 • 0C-29 • F0-24 0C-34

# Contents

| PRECISION         | OPTICAL                 | MX OC-16                                 |                                                                                          | FIBER-OP                 | TIC                        | MS   | FO-13      |
|-------------------|-------------------------|------------------------------------------|------------------------------------------------------------------------------------------|--------------------------|----------------------------|------|------------|
| COMPONE           | NTS                     | MXY OC-15                                |                                                                                          | PRODUC1                  | IS                         | OC   | FO-52      |
| Part              | Page No.                | PB                                       | OC-24                                                                                    | Part                     | Page No.                   | OCM  | FO-52      |
| ABS               | OC-31                   | PE                                       | OC-23                                                                                    | ACB                      | FO-11                      | OCT  | FO-52      |
| ABSU              | OC-31                   | PEH                                      | OC-23                                                                                    | CFC                      | FO-45,46                   | PAD  | FO-34      |
| ABSV              | OC-31                   | PHB                                      | OC-25                                                                                    | CFM                      | FO-47                      | PAF  | FO-6,37,38 |
| AD                | OC-30                   | PM                                       | OC-24                                                                                    | CFS                      | FO-47                      | PAL  | FO-7,40    |
| ADB               | OC-31                   | PQ                                       | OC-23                                                                                    | CSMA                     | FO-46                      | PBB  | FO-14      |
| ADBU              | OC-31                   | PSCL                                     | OC-20, 24                                                                                | FB                       | FO-4                       | PC   | FO-30      |
| ADBV              | OC-31                   | PSP                                      | OC-21                                                                                    | FB-PAM                   | FO-34                      | PCB  | FO-14      |
| ADG               | OC-32                   | PSU                                      | OC-22                                                                                    | FCB                      | FO-11                      | PFC  | FO-49      |
| ADT               | OC-32                   | PSV                                      | OC-22                                                                                    | FCM                      | FO-10,43                   | PFP  | FO-29      |
| ADU               | OC-30                   | PT                                       | OC-25                                                                                    | FCP                      | FO-9,42                    | PFS  | FO-49      |
| ADV               | OC-30                   | PUM                                      | OC-24                                                                                    | FCS                      | FO-9,42                    | PFSV | FO-23      |
| AT                | OC-32                   | PUR                                      | OC-22                                                                                    | FDB                      | FO-15                      | POA  | FO-6,16    |
| DPU               | OC-25                   | PVR                                      | OC-22                                                                                    | FFBx                     | FO-19                      | PSO  | FO-29      |
| GC                | OC-11                   | RA                                       | OC-28                                                                                    | FLBx                     | FO-20                      | PSP  | FO-13      |
| EL                | OC-10                   | RC                                       | OC-29                                                                                    | FMB                      | FO-8                       | PTE  | FO-40      |
| ELQ               | OC-11                   | RM                                       | OC-26                                                                                    | FMBS                     | FO-25                      | RCB  | FO-11      |
| ELU               | OC-10                   | RMA                                      | OC-26                                                                                    | FS                       | FO-47                      | RMAB | FO-15      |
| FD                | OC-33                   | RZ                                       | OC-27                                                                                    | FT                       | FO-4                       | RZB  | FO-15      |
| IE                | OC-35                   | SB                                       | OC-29                                                                                    | FTBx                     | FO-20                      | SOP  | FO-28,34   |
| LC                | OC-8                    | SCL                                      | OC-20                                                                                    | HCB                      | FO-11                      | VA   | FO-26      |
| LCQ               | OC-8                    | SU                                       | OC-19                                                                                    | HCF                      | FO-45,46                   | VDL  | FO-24      |
| LCU<br>LCV<br>LL  | OC-8<br>OC-8<br>OC-5,9  | W<br>WQ<br>WU                            | OC-34<br>OC-34<br>OC-34                                                                  | HEF<br>HW<br>IO-F        | FO-46<br>FO-12<br>FO-50    |      |            |
| LLA<br>LLO<br>LLQ | OC-7<br>OC-9<br>OC-6    | WV<br>MicroSpot<br>OBJECTIV              | OC-34                                                                                    | IO-FFB<br>IO-FLB<br>IO-G | FO-21<br>FO-22<br>FO-51    |      |            |
| LLS<br>LLU<br>LLV | OC-7<br>OC-3,4<br>OC-3  | Part<br>LMH<br>LMU                       | Page No.<br>MS-5<br>MS-3                                                                 | io-h<br>io-j<br>io-paf   | FO-50<br>FO-51<br>FO-51    |      |            |
| LMO<br>M<br>MH    | OC-9<br>OC-13<br>OC-13  | AIR-PATH<br>ISOLATOR                     | S                                                                                        | iob<br>LPR<br>LL         | FO-23<br>FO-28<br>FO-16,41 |      |            |
| MI<br>MR<br>MU    | OC-13<br>OC-13<br>OC-13 | Part<br>IO-(244-505<br>IO-(505-700       | Page No.           5)         IO-9           0)         IO-10           5)         IO-11 | LLO<br>MFI<br>MFI-FMB    | FO-16,41<br>FO-54<br>FO-25 |      |            |
| MS<br>MT<br>MY    | OC-17<br>OC-17<br>OC-16 | IO-(925-110<br>IO-(1260-16<br>IO-1950-22 | 00) IO-13<br>650) IO-14<br>00) IO-14                                                     |                          |                            |      |            |



### **Optics for Research**

Box 82 Caldwell, New Jersey 07006 (973) 228-4480 FAX: (973) 228-0915 www.ofr.com info@ofr.com

| CONTENTS                                   | PAGES      |
|--------------------------------------------|------------|
| Lens Design Notes                          | 0C-2       |
| Laser Lenses                               | 0C-(3-6)   |
| Air-Spaced Doublet Lenses                  | 0C-7       |
| Cylindrical Lenses                         | 0C-8       |
| Microscope Objectives                      | 0C-9       |
| Laser Beam Expanders                       | 0C-10, 11  |
| Apodizer (Flat-Top)                        | 0C-11      |
| Mirrors, Front-Surface                     | 0C-12, 13  |
| Dielectric Coatings                        | 0C-14      |
| Laser Reflectors, Beamsplitters            | 0C-(15-20) |
| Beamsplitters                              | 0C-18, 19  |
| Polarization-State-Preserving Beamsplitter | s 0C-21    |
| Polarizers                                 | 0C-(22-25) |
| Depolarizers                               | 0C-25      |
| Laser Retarders                            | 0C-26, 27  |
| Broadband Retarders                        | 0C-28      |
| Variable Retarders                         | 0C-29      |
| Birefringent Filters                       | 0C-29      |
| Prisms                                     | 0C-30, 31  |
| Coupling Prisms                            | 0C-32      |
| Neutral Density Filters                    | 0C-33      |
| Windows                                    | 0C-34      |
| Solid Etalons                              | 0C-35      |
|                                            |            |

### **DESIGN AND MANUFACTURING**

Optical Engineering/Design Manufacturing of Optical Components Electro/Magneto-Optic Devices



### **Optical Engineering and Design Services**

OFR is frequently called upon for the solution of optical component or system design problems, ray tracing or design, or problems in optical physics.

We work with the most advanced computer design programs, and we maintain the goal of a design which is economical to manufacture yet meets performance specifications. We invite solicitations requiring design of:

- Telescope Objective Lenses & systems
- Copy lenses
- □ Scanning optics and systems
- Laser printing lenses
- Medical optics and systems
- Projection optics
- Spectrometer optics
- Analytical optics
- Fiber optic devices and systems

### PRECISION OPTICAL COMPONENTS

| Part             | Page No.                | Part              | Page No.                   | Part             | Page No.                | Part            | Page No.                | Part | Page No. |
|------------------|-------------------------|-------------------|----------------------------|------------------|-------------------------|-----------------|-------------------------|------|----------|
| ABS              | OC-31                   | ELQ               | OC-11                      | LMO              | OC-9                    | PM              | OC-24                   | RMA  | OC-26    |
| ABSU             | OC-31                   | ELU               | OC-10                      | M                | OC-13                   | PQ              | OC-23                   | RZ   | OC-27    |
| ABSV             | OC-31                   | FD                | OC-33                      | MH               | OC-13                   | PSCL            | OC-20,24                | SB   | OC-29    |
| AD               | OC-30                   | IE                | OC-35                      | MI               | OC-13                   | PSP             | OC-21                   | SCL  | OC-20    |
| ADB              | OC-31                   | LC                | OC-8                       | MR               | OC-13                   | PSU             | OC-22                   | SU   | OC-19    |
| ADBU             | OC-31                   | LCQ               | OC-8                       | MU               | OC-13                   | PSV             | OC-22                   | W    | OC-34    |
| ADBV             | OC-31                   | LCU               | OC-8                       | MS               | OC-17                   | PT              | OC-25                   | WQ   | OC-34    |
| ADG              | OC-32                   | LCV               | OC-8                       | MT               | OC-17                   | PUM             | OC-24                   | WU   | OC-34    |
| ADT              | OC-32                   | LL                | OC-5,9/FO-16               | MY               | OC-16                   | PUR             | OC-22                   | WV   | OC-34    |
| ADU<br>ADV<br>AT | OC-30<br>OC-30<br>OC-32 | LLA<br>LLO<br>LLQ | OC-7<br>OC-9/FO-16<br>OC-6 | MX<br>MXY<br>PB  | OC-16<br>OC-15<br>OC-24 | PVR<br>RA<br>RC | OC-22<br>OC-28<br>OC-29 |      |          |
| DPU<br>GC<br>FI  | OC-25<br>OC-11<br>OC-10 | LLS<br>LLU<br>LLV | OC-7<br>OC-3,4<br>OC-3     | PE<br>PEH<br>PHB | OC-23<br>OC-23<br>OC-25 | RF<br>RFU<br>RM | OC-28<br>OC-28<br>OC-26 |      |          |

## Lens Design Notes

OFR manufactures the widest selection of standard, minimum aberration (Best Form) Laser Lenses available from any supplier. Combining quality and theory, these lenses will meet predicted performance within diffraction limit. We are concerned with the size of the focal spot (the "blur circle" diameter or Airy's Disc). The principles are described in any university-level physics text, namely the interplay between spherical aberration and diffraction.

Specifically, two phenomena occur-

- Refraction of a ray of light through a lens along with its resultant spherical aberration,
- Distribution of optical energy in the focal plane as caused by diffraction.

If there were no such thing as diffraction, then the focal spot would simply get smaller as the focal length increases (or conversely, as the aperture decreases) corresponding to decreasing spherical aberration.

There is a limit to how small the focal spot can become, even though spherical

### **Custom Lenses** Manufacturing

At OFR we manufacture more lenses than any other type of component. Most of the lenses we manufacture are on a custom basis and in large quantities.

Therefore, not only do we offer our wide, standard line of off-the-shelf lenses, but we are especially skilled in rapid and precision manufacturing of lenses on a custom basis, in single and low quantities as well as in large quantities.

We manufacture lenses in all standard optical materials. Our largest lens is in the vicinity of 16 inches diameter.

Our current radius tooling and test plate values are also available on our website www.ofr.com. The designer is encouraged to base designs utilizing standard radii values and preferred glasses wherever possible; this will aid in reducing costs and delivery times. aberration might approach zero. This is controlled by diffraction, which describes the distribution of energy at the focus. This is Airy's Disc, and is defined as the diameter of the central ring within which 84% of the energy is contained.

The two formulas relating to focal spot size are on the front cover of this catalog and below. Thus, the two factors controlling the size of the focal spot are described as:

- □ Spherical aberration The focal spot size, b<sub>S</sub> =1.27λ f/d derives from the "resolving power" of an optical aperture focusing light from a distant star. The constant 1.27 corresponds to a monochromatic Gaussian beam. In the case of light from a distant star (white light of constant energy density cross-section), the constant is the familiar 2.44.
- Diffraction The focal spot size is b<sub>d</sub> = Kd<sup>3</sup>/f<sup>2</sup>. K is a constant dependent upon the index of refraction. f is the focal length. d is the beam diameter.

See the formulas on the front cover of this section. These are approximations, intended to estimate quickly focal spot size.

We are concerned with the intersection of these two functions, from which we calculate our optimum focal length for any lens with respect to a beam of a specific diameter. Thus,  $f_0 = C(d^4/\lambda)^{1/3}$ (again, see formulas on front cover). Then, we calculate the two focal spot sizes,  $b_s$  and  $b_d$ . These will be equal when we use the lens at its "optimum focal length",  $f_0$ .

When the beam diameter exceeds the optimum aperture, or the focal length gets shorter, then diffraction is in control, and the focal spot grows rapidly by Kd<sup>3</sup>/f<sup>2</sup>.

Conversely, when the beam diameter decreases, or the focal length increases, spherical aberration takes over, and the focal spot increases linearly by f/d.

OFR BestForm (minimum spherical aberration) Laser Lenses will perform to diffraction limit when used within the constraints described by these formulas.

### **Spherical Radius Tooling, millimeters**

| -     |       |       | <b>J</b> , |        |        |        |          |
|-------|-------|-------|------------|--------|--------|--------|----------|
| 2.35  | 15.36 | 26.89 | 41.42      | 65.67  | 109.13 | 225.22 | 703.26   |
| 3.12  | 15.85 | 27.11 | 41.56      | 67.26  | 111.60 | 231.07 | 706.50   |
| 3.70  | 16.22 | 27.18 | 41.66      | 68.39  | 113.73 | 235.56 | 720.14   |
| 4.59  | 16.42 | 27.53 | 42.40      | 69.50  | 114.61 | 245.13 | 732.26   |
| 4.76  | 16.53 | 27.86 | 43.16      | 70.69  | 114.88 | 246.13 | 735.39   |
| 5.03  | 16.84 | 28.27 | 43.41      | 71.86  | 115.17 | 249.54 | 760.00   |
| 5.43  | 16.91 | 28.64 | 43.71      | 73.10  | 117.77 | 260.90 | 841.95   |
| 5.56  | 17.10 | 29.04 | 44.16      | 74.42  | 121.45 | 265.14 | 848.13   |
| 5.77  | 17.56 | 29.49 | 44.62      | 75.28  | 123.45 | 269.13 | 848.90   |
| 5.99  | 18.18 | 29.88 | 45.11      | 75.77  | 124.66 | 280.69 | 918.45   |
| 6.14  | 18.50 | 30.28 | 45.59      | 76.05  | 126.86 | 282.80 | 977.44   |
| 6.34  | 18.54 | 30.36 | 46.57      | 77.09  | 128.47 | 302.85 | 1061.04  |
| 6.45  | 18.80 | 30.85 | 46.71      | 78.60  | 129.30 | 313.64 | 1120.49  |
| 6.50  | 19.46 | 31.00 | 47.63      | 79.20  | 130.57 | 321.00 | 1251.21  |
| 6.62  | 19.53 | 31.72 | 47.92      | 79.99  | 132.50 | 328.29 | 1396.84  |
| 6.74  | 19.64 | 32.00 | 48.17      | 81.18  | 135.71 | 329.89 | 1413.32  |
| 7.10  | 20.00 | 32.11 | 48.74      | 81.50  | 136.75 | 337.71 | 1439.61  |
| 7.58  | 20.20 | 32.61 | 49.31      | 81.60  | 141.33 | 353.46 | 1501.00  |
| 7.93  | 20.39 | 33.12 | 49.88      | 83.19  | 142.46 | 357.41 | 1548.53  |
| 8.10  | 20.60 | 33.25 | 50.16      | 83.79  | 144.00 | 360.69 | 1800.00  |
| 8.25  | 20.95 | 33.65 | 50.49      | 84.56  | 146.20 | 367.60 | 1942.00  |
| 8.89  | 21.19 | 34.11 | 51.08      | 84.82  | 149.00 | 380.00 | 2000.00  |
| 9.49  | 21.42 | 34.18 | 51.66      | 86.53  | 151.43 | 385.45 | 2068.17  |
| 9.87  | 21.63 | 34.74 | 52.36      | 88.33  | 153.00 | 424.15 | 2119.40  |
| 10.12 | 21.65 | 34.84 | 52.98      | 90.13  | 156.25 | 430.17 | 2440.00  |
| 10.18 | 22.17 | 35.33 | 54.05      | 92.18  | 156.96 | 460.00 | 2825.51  |
| 10.30 | 22.80 | 36.27 | 54.39      | 92.43  | 163.06 | 471.01 | 3000.00  |
| 10.53 | 23.04 | 30.87 | 55.80      | 94.22  | 109.03 | 484.25 | 3075.00  |
| 12.20 | 23.37 | 37.01 | 57.23      | 90.37  | 172.29 | 510.18 | 3420.00  |
| 12.24 | 23.30 | 37.41 | 57.07      | 97.43  | 10110  | 510.17 | 4240.00  |
| 12.00 | 24.00 | 37.09 | 50.07      | 90.79  | 104.10 | 510.52 | 5000.00  |
| 12.00 | 24.09 | 30.00 | 50.91      | 100.03 | 192.73 | 529.20 | 0300.00  |
| 12.70 | 24.03 | 20.09 | 60.59      | 100.94 | 100.02 | 557.07 | 10000.00 |
| 12.10 | 24.94 | 20.90 | 61 44      | 102.27 | 201 96 | 605.04 | 12690.00 |
| 13.56 | 25.24 | 39.25 | 62.37      | 102.70 | 201.00 | 627 30 | 13060.00 |
| 1/ 00 | 25.83 | 40.38 | 63 35      | 106.01 | 211 03 | 6/2 98 |          |
| 14.00 | 26.17 | 40.30 | 64.24      | 107.33 | 218.20 | 673 50 |          |
| 1/ 88 | 26.17 | 40.77 | 65.22      | 223 16 | 691 /1 | 073.50 |          |
| 14.00 | 20.00 | 40.50 | 00.22      | 220.10 | 031.41 |        |          |

## Laser Lenses

### Laser Lenses

#### STANDARD BestForm LASER LENSES

OFR manufactures and maintains in stock its series of BestForm Laser Lenses. These are designed for minimum spherical aberration, and when not exceeding optimum beam diameter (see table below), will produce focal spots within diffractionlimit theory. These lenses can be used interchangeably for focusing, expanding or collimating.

### Surface Quality

Polish exceeds 10-5 and sphericity better than  $1\!\!\!/_{10}\mbox{-wave over the aperture at the}$ 

design wavelength. All lenses are polished to the highest spherical figure and fineness consistent with optimum performance in all respects: minimum blur-circle, minimum wavefront distortion, minimum scattering loss, and maximum transmittance of energy.

#### Antireflection Coatings

All lenses are available with narrow-band or broadband antireflection coatings peaked for the major wavelength of operation, at which transmittance will exceed 99%. When ordering, add wavelength (in nm) as final dash number in Catalog Part Number. For example. LL-25-63-633, etc. BestForm Laser Lenses are designed with minimum aberration ratio of the radii of both surfaces.

#### Mechanical Specifications

Diameter Thickness Bevels Radii +0,-0.1 mm ± 0.1 mm 0.3 mm x 45° ± 2%



# Laser Lenses for 157 nm\* and 193 nm

#### LASER LENSES, 193 nm

OFR manufactures 193 nm Laser Lenses in two excimer-grades, CaF2 and fused silica. OFR feels that optical performance of either type should be equivalent. However, in spite of significant improvements in materials since the arrival of the ArF laser, limited performance data leave questions unanswered. Therefore, the choice of CaF<sub>2</sub> or fused silica is open to interpretation. Please discuss with OFR.

### LASER LENSES, 157 nm

The new F<sub>2</sub> lasers at 157 nm promise finer resolution. However, currently available materials, such as CaF<sub>2</sub> and MgF<sub>2</sub>, may be limited in performance at this short wavelength. Consequently, materials

producers are working diligently on improvements in order to meet growing demand.

Therefore, OFR is offering components, such as Laser lenses, in carefully selected materials. However, at this time, because of limitations not only in materials but also in methods of testing and verification, OFR will only supply components under strict terms and conditions. Please inquire.

#### LASER LENSES for ArF EXCIMER LASERS, 193 nm

Material

Size

. . ..

Material Excimer Grade CaF2 Design Wavelength 193 nm Index at 193 nm 1.5045 CaF2 transmits 130 nm-9.6 µm

Catalog

Number &

**Focal Length** 

Material Excimer Grade Fused Silica Design Wavelength 193 nm Index at 193 nm 1.5604 Fused Silica transmits 180 nm-2.3 µm

Focal

Length

at 193 nm

| d Silica             | ANTIREFLEC<br>Wavelength  | TION COATIN<br>Bandwidth | G Average<br>Reflectance | Power<br>Rating*       |
|----------------------|---------------------------|--------------------------|--------------------------|------------------------|
|                      | 193nm                     | ±5 nm                    | <0.5%                    | 400 MW/cm <sup>2</sup> |
| m-2.3 μm             | *Power rating I           | based upon 20 i          | n-s pulses, 20 Hz        | 2.                     |
|                      |                           |                          |                          |                        |
| Optimum<br>Beam Dia. | Theoretical<br>Focal Spot | R1 mm                    | R2 mm                    | Center<br>Thickness    |
| 2.1 mm               | 2.0 µm                    | 12.70                    | -38.89                   | 3.5                    |
| 2.1 mm               |                           | -12.70                   | 44.62                    | 2.5                    |
| 2.4 mm               | 2.0 µm                    | 12.20                    | -55.80                   | 3.5                    |
| 2.4 mm               | _                         | -12.55                   | 55.80                    | 2.5                    |
| 2.5 mm               | 2.2 µm                    | 14.00                    | -79.99                   | 3.5                    |
| 2.5 mm               |                           | -14.60                   | 79.99                    | 2.5                    |
| 2.8 mm               | 2.2 µm                    | 14.00                    | -121.45                  | 3.5                    |
|                      |                           |                          |                          |                        |

| LLU-13-17-193           | FS               | 1/2 dla.         | 17.4 mm              | 2.1 mm            | 2.0 µm        | 12.70  | -38.89   | 3.5 |
|-------------------------|------------------|------------------|----------------------|-------------------|---------------|--------|----------|-----|
| LLU-13-17N-193          | FS               | 1⁄2" dia.        | -17.4 mm             | 2.1 mm            | _             | -12.70 | 44.62    | 2.5 |
| LLV-13-20-193           | CaF <sub>2</sub> | 1⁄2" dia.        | 20.2 mm              | 2.4 mm            | 2.0 µm        | 12.20  | -55.80   | 3.5 |
| LLV-13-20N-193          | CaF <sub>2</sub> | 1⁄2" dia.        | -20.0 mm             | 2.4 mm            | -             | -12.55 | 55.80    | 2.5 |
| LLU-13-22-193           | FS               | 1⁄2" dia.        | 21.8 mm              | 2.5 mm            | 2.2 µm        | 14.00  | -79.99   | 3.5 |
| LLU-13-22N-193          | FS               | 1⁄2" dia.        | -21.8 mm             | 2.5 mm            | · _           | -14.60 | 79.99    | 2.5 |
| LLV-13-25-193           | CaF <sub>2</sub> | 1⁄2" dia.        | 25.1 mm              | 2.8 mm            | 2.2 µm        | 14.00  | -121.45  | 3.5 |
| LLV-13-25N-193          | CaF <sub>2</sub> | 1⁄2" dia.        | -25.1 mm             | 2.8 mm            | _             | -14.60 | 100.03   | 2.5 |
| LLU-13-35-193           | FS               | 1⁄2" dia.        | 34.8 mm              | 4.4 mm            | 2.4 µm        | 22.80  | -121.45  | 3.5 |
| LLU-13-35N-193          | FS               | 1⁄2" dia.        | -41.7 mm             | 4.4 mm            | -             | -22.80 | 141.32   | 2.5 |
| LLV-13-40-193           | CaF <sub>2</sub> | 1⁄2" dia.        | 39.9 mm              | 4.0 mm            | 2.7 µm        | 23.56  | -132.50  | 3.5 |
| LLV-13-40N-193          | CaF <sub>2</sub> | 1⁄2" dia.        | -40.3 mm             | 4.0 mm            | · _           | -24.07 | 130.57   | 2.5 |
| LLU-25-55-193           | FS               | 1" dia.          | 54.8 mm              | 6.2 mm            | 2.7 µm        | 36.24  | -192.73  | 5.5 |
| LLV-25-63-193           | CaF <sub>2</sub> | 1" dia.          | 62.5 mm              | 5.6 mm            | 2.9 µm        | 37.85  | -184.35  | 6.0 |
| LLU-25-70-193           | FS               | 1" dia.          | 69.6 mm              | 7.3 mm            | 3.0 µm        | 45.59  | -265.14  | 5.5 |
| LLV-25-80-193           | CaF <sub>2</sub> | 1" dia.          | 79.8 mm              | 6.6 mm            | 3.0 µm        | 47.65  | -249.54  | 5.0 |
| LLU-25-87-193           | FS               | 1" dia.          | 87.0 mm              | 8.7 mm            | 3.1 µm        | 57.23  | -326.28  | 5.0 |
| LLV-25-100-193          | CaF <sub>2</sub> | 1" dia.          | 100.4 mm             | 7.9 mm            | 3.3 µm        | 58.07  | -385.44  | 4.5 |
| LLU-25-122-193          | FS               | 1" dia.          | 122.4 mm             | 11.1 mm           | 3.3 µm        | 79.99  | -471.01  | 5.0 |
| LLV-25-140-193          | CaF2             | 1" dia.          | 140.3 mm             | 10.1 mm           | 3.5 µm        | 81.50  | -529.26  | 4.5 |
| LLU-25-165-193          | FS               | 1" dia.          | 165.3 mm             | 14.0 mm           | 3.6 µm        | 111.60 | -529.26  | 5.0 |
| LLV-25-190-193          | CaF <sub>2</sub> | 1" dia.          | 189.4 mm             | 12.7 mm           | 3.8 µm        | 109.13 | -760.00  | 4.0 |
| LLU-25-261-193          | FS               | 1" dia.          | 261.0 mm             | 19.7 mm           | 4.0 µm        | 169.63 | -1061.04 | 4.5 |
| LLV-25-300-193          | CaF <sub>2</sub> | 1" dia.          | 300.5 mm             | 17.9 mm           | 4.3 µm        | 176.66 | -1061.04 | 4.0 |
| NOTE: Other diameters a | nd focal longths | and nogative fee | al longthe available | on custom basis P | loaso inquiro |        |          |     |

NOTE: Other diameters and focal lengths, and negative focal lengths, available on custom basis. Please inquire.

To order without AR coating, simply drop "-193". Thus, LLV-25-125, for example. Transmission of uncoated lens, 92%.

| LASER LENSI<br>LASERS, 248                           | ES for UV EXCIMER<br>nm to 355 nm             | Laser_<br>Nd:YAG      | $\frac{\lambda}{213 \text{ nm}}$ | NARROWE<br>Specify λ        | BAND AR COAT<br>Bandwidth at        | INGS<br>Average            | Power                             |
|------------------------------------------------------|-----------------------------------------------|-----------------------|----------------------------------|-----------------------------|-------------------------------------|----------------------------|-----------------------------------|
| Material UV Gra<br>Design Wavelen<br>Index at 300 nm | de Silica<br>I <b>gth</b> 300 nm<br>I 1.48779 | KrF<br>Nd:YAG<br>XeCl | 248 nm<br>266 nm<br>308 nm       | 213-355 nr<br>*Power rating | n ~8%<br>based upon 20 n-se         | <pre>c pulses, 20 Hz</pre> | 500 MW/cm <sup>2</sup>            |
| UV fused silica t                                    | transmits 180 nm-2.3 μm                       | HeCd<br>N2            | 325 nm<br>337 nm                 | BROADBA                     | ND AR COATIN                        | IGS<br>Average             | Power                             |
| Wavelength                                           | Focal Length<br>Correction                    | Nd:YAG                | 351 nm<br>355 nm                 | Description                 | Bandwidth<br>240 - 360 nm           | Reflectance                | Rating*<br>200 MW/cm <sup>2</sup> |
| 248 nm<br>300 nm<br>355 nm                           | -4%<br>_<br>+2%                               |                       |                                  | NUV<br>*Power rating        | 325 - 500 nm<br>based upon 20 n-s p | <0.5%<br>oulses, 20 Hz.    | 200 MW/cm <sup>2</sup>            |

For AR coating when ordering, insert AR coating at  $\lambda$ , for example, LLU-25-100-UVB or LLU-25-140-248, see page OC-14.

| Catalog<br>Number & | 0.0       | Focal<br>Length | Optimum  | Theoretical | Dá      | <b>D</b> 0 | Center    |
|---------------------|-----------|-----------------|----------|-------------|---------|------------|-----------|
| Focal Length        | Size      | at 300 nm       | Beam Dia | Focal Spot  | R1 mm   | R2 mm      | Inickness |
| LLU-13-20-λ         | 1⁄2" dia. | 20.1 mm         | 2.6 mm   | 2.5 µm      | 12.70   | -38.89     | 3.5       |
| LLU-13-20N-λ        | 1⁄2" dia. | -20.1 mm        | 2.6 mm   | —           | -22.70  | 44.62      | 2.5       |
| LLU-13-25-λ         | 1⁄2" dia. | 24.7 mm         | 3.1 mm   | 2.6 µm      | 14.00   | -79.99     | 3.5       |
| LLU-13-25N-λ        | 1⁄2" dia. | -25.1 mm        | 3.1 mm   |             | -14.60  | 79.99      | 2.5       |
| LLU-13-40-λ         | 1⁄2" dia. | 40.0 mm         | 4.4 mm   | 3.5 µm      | 22.80   | -121.45    | 3.5       |
| LLU-13-40N-λ        | 1⁄2" dia. | -40.0 mm        | 4.4 mm   |             | -22.80  | 141.32     | 2.5       |
| LLU-25-63-λ         | 1" dia.   | 63.0 mm         | 6.2 mm   | 3.9 µm      | 36.24   | -192.73    | 5.5       |
| LLU-25-63N-λ        | 1" dia.   | -62.2 mm        | 6.2 mm   |             | -36.24  | 192.73     | 3.0       |
| LLU-25-80-λ         | 1" dia.   | 80.2 mm         | 7.3 mm   | 4.2 µm      | 45.59   | -265.14    | 5.5       |
| LLU-25-80N-λ        | 1" dia.   | -79.5 mm        | 7.3 mm   |             | -45.59  | 265.14     | 3.0       |
| LLU-25-100-λ        | 1" dia.   | 100.2 mm        | 8.7 mm   | 4.3 µm      | 57.23   | -326.28    | 5.0       |
| LLU-25-100N-λ       | 1" dia.   | -99.6 mm        | 8.7 mm   |             | -57.23  | 326.28     | 2.5       |
| LLU-25-125-λ        | 1" dia.   | 124.6 mm        | 10.2 mm  | 4.7 µm      | 73.10   | -353.46    | 5.0       |
| LLU-25-125N-λ       | 1" dia.   | -123.8 mm       | 10.2 mm  |             | -73.10  | 356.46     | 3.0       |
| LLU-25-140-λ        | 1" dia.   | 140.5 mm        | 11.1 mm  | 4.8 µm      | 79.99   | -471.01    | 5.0       |
| LLU-25-140N-λ       | 1" dia.   | -139.9 mm       | 11.1 mm  |             | -79.99  | 471.01     | 3.0       |
| LLU-25-160-λ        | 1" dia.   | 161.2 mm        | 12.3 mm  | 5.0 µm      | 90.13   | -605.94    | 5.0       |
| LLU-25-190-λ        | 1" dia.   | 189.3 mm        | 14.0 mm  | 5.2 µm      | 111.60  | -529.26    | 5.0       |
| LLU-25-240-λ        | 1" dia.   | 241.7 mm        | 16.6 mm  | 5.5 µm      | 136.75  | -848.13    | 5.0       |
| LLU-25-300-λ        | 1" dia.   | 300.1 mm        | 19.7 mm  | 5.8 µm      | 169.63  | -1061.04   | 4.5       |
| LLU-25-300N-λ       | 1" dia.   | -299.3 mm       | 19.7 mm  |             | -169.63 | 1061.04    | 4.5       |
| LLU-25-380-λ        | 1" dia.   | 381.5 mm        | 23.5 mm  | 6.2 µm      | 225.49  | -1061.04   | 4.5       |
| LLU-25-475-λ        | 1" dia.   | 482.7 mm        | 23.5 mm  | 7.7 µm      | 235.56  | Plano      | 4.5       |
| LLU-25-610-λ        | 1" dia.   | 620.6 mm        | 23.5 mm  | 9.9 µm      | 302.85  | Plano      | 4.5       |
| LLU-25-760-λ        | 1" dia.   | 789.8 mm        | 23.5 mm  | 12.3 µm     | 385.44  | Plano      | 4.5       |
| LLU-25-1000-λ       | 1" dia.   | 965.2 mm        | 23.5 mm  | 16.2 µm     | 471.01  | Plano      | 4.0       |
| LLU-25-2000-λ       | 1" dia.   | 2174.3 mm       | 23.5 mm  | 32.4 µm     | 1061 04 | Plano      | 4.0       |
| LLU-51-150-λ        | 2" dia.   | 150.5 mm        | 11.9 mm  | 4.8 µm      | 84.82   | -529.26    | 8.5       |
| LLU-51-190-λ        | 2" dia.   | 189.5 mm        | 14.0 mm  | 5.2 µm      | 111.60  | -529.26    | 7.0       |
| LLU-51-240-λ        | 2" dia.   | 238.1 mm        | 16.6 mm  | 5.5 µm      | 136.75  | -760.00    | 6.5       |
| LLU-51-300-λ        | 2" dia.   | 300.2 mm        | 19.7 mm  | 5.8 µm      | 169.63  | -1061.04   | 6.5       |
| LLU-51-380-λ        | 2" dia.   | 381.2 mm        | 23.5 mm  | 6.2 µm      | 225.22  | -1061.04   | 5.5       |
| LLU-51-475-λ        | 2" dia.   | 475.1 mm        | 27.8 mm  | 6.5 µm      | 260.90  | -2068.17   | 5.5       |
| LLU-51-610-λ        | 2" dia.   | 611.6 mm        | 33.6 mm  | 6.9 µm      | 357.41  | -1800.00   | 5.5       |
| LLU-51-760-λ        | 2" dia.   | 762.7 mm        | 39.5 mm  | 7.3 µm      | 438.93  | -2440.00   | 5.0       |
| LLU-51-1000-λ       | 2" dia.   | 992.3 mm        | 48.5 mm  | 7.9 µm      | 484.25  | Plano      | 5.0       |

NOTE: Other diameters and focal lengths available on custom basis. Please inquire.

### LASER LENSES for VIS and NIR LASERS, 400 nm to $2.0\,\mu\text{m}$

| Material Grade A 689382 Glass (SF8)<br>Design Wavelength 650 nm<br>Index at 650 nm 1.6835 |                         | BROADBAND                                                                                                                                                                                   | O AR COATINGS  | Average     | Power<br>Rating*       |  |
|-------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|------------------------|--|
|                                                                                           |                         | Description                                                                                                                                                                                 | Bandwidth      | Reflectance |                        |  |
| SF8 glass transmi                                                                         | ts from 360 nm - 2.3 μm | VIS                                                                                                                                                                                         | 450 - 700 nm   | < 0.5%      | 300 MW/cm <sup>2</sup> |  |
|                                                                                           |                         | VIR                                                                                                                                                                                         | 550 - 780 nm   | < 0.5%      | 300 MW/cm <sup>2</sup> |  |
|                                                                                           | Focal Length            | NIR                                                                                                                                                                                         | 700 - 950 nm   | < 0.5%      | 300 MW/cm <sup>2</sup> |  |
| Wavelength                                                                                | Correction              | IR                                                                                                                                                                                          | 1250 - 1550 nm | < 0.5%      | 300 MW/cm <sup>2</sup> |  |
| 488 nm<br>650 nm<br>1550 nm                                                               | -3%<br>-<br>+5%         | *Power rating based upon 20 n-sec pulses, 20 Hz<br>NOTE: Other AR coatings available, please inquire.<br>For Focal Lengths shorter than 20 mm, see page OC-9, FIBER-OPT<br>COUPLING LENSES. |                |             |                        |  |

#### For AR coating when ordering, insert AR coating at $\lambda$ , for example, LL-25-100-NIR, see page OC-14.

| Catalog<br>Number &<br>Focal Length | Size      | Focal<br>Length<br>at 650 nm | Optimum<br>Beam Dia | Theoretical<br>Focal Spot | R1 mm   | R2 mm | Center<br>Thickness |
|-------------------------------------|-----------|------------------------------|---------------------|---------------------------|---------|-------|---------------------|
| LL-13-20-λ                          | 1/2" dia. | 19.9 mm                      | 3.1 mm              | 5.3 µm                    | 13.58   | plano | 3.0                 |
| LL-13-20Ν-λ                         | 1⁄2" dia. | -19.9 mm                     | 3.1 mm              | <u> </u>                  | -13.58  | plano | 1.4                 |
| LL-13-25-λ                          | 1⁄2" dia. | 25.0 mm                      | 3.7 mm              | 5.5 µm                    | 17.10   | plano | 3.0                 |
| LL-13-25N-λ                         | 1⁄2" dia. | -25.0 mm                     | 3.7 mm              |                           | -17.10  | plano | 1.8                 |
| LL-25-40-λ                          | 1" dia.   | 39.7 mm                      | 5.4 mm              | 6.4 µm                    | 27.18   | plano | 4.5                 |
| LL-25-40N-λ                         | 1" dia.   | -39.6 mm                     | 5.4 mm              |                           | -27.08  | plano | 2.5                 |
| LL-25-63-λ                          | 1" dia.   | 63.1 mm                      | 7.5 mm              | 7.3 µm                    | 43.16   | plano | 4.5                 |
| LL-25-63N-λ                         | 1" dia.   | -63.1 mm                     | 7.5 mm              |                           | -43.16  | plano | 2.5                 |
| LL-25-80-λ                          | 1" dia.   | 79.5 mm                      | 9.0 mm              | 7.7 µm                    | 54.39   | plano | 4.5                 |
| LL-25-80N-λ                         | 1" dia.   | -79.5 mm                     | 9.0 mm              |                           | -54.39  | plano | 2.5                 |
| LL-25-100-λ                         | 1" dia.   | 100.0 mm                     | 10.7 mm             | 8.1 µm                    | 68.39   | plano | 4.5                 |
| LL-25-100N-λ                        | 1" dia.   | -100.0 mm                    | 10.7 mm             |                           | -68.39  | plano | 3.0                 |
| LL-25-125-λ                         | 1" dia.   | 124.0 mm                     | 12.6 mm             | 8.6 µm                    | 84.82   | plano | 4.0                 |
| LL-25-125N-λ                        | 1" dia.   | -124.0 mm                    | 12.6 mm             |                           | -84.82  | plano | 3.0                 |
| LL-25-140-λ                         | 1" dia.   | 140.9 mm                     | 13.7 mm             | 8.9 µm                    | 96.37   | plano | 4.0                 |
| LL-25-140N-λ                        | 1" dia.   | -140.9 mm                    | 13.7 mm             |                           | -96.37  | plano | 3.3                 |
| LL-25-160-λ                         | 1" dia.   | 159.5 mm                     | 15.2 mm             | 9.1 µm                    | 109.13  | plano | 4.0                 |
| LL-25-160N-λ                        | 1" dia.   | -159.5 mm                    | 15.2 mm             |                           | -190.13 | plano | 3.3                 |
| LL-25-190-λ                         | 1" dia.   | 190.9 mm                     | 17.3 mm             | 9.5 µm                    | 130.57  | plano | 4.0                 |
| LL-25-190N-λ                        | 1" dia.   | -190.9 mm                    | 17.3 mm             |                           | -130.57 | plano | 3.5                 |
| LL-25-240-λ                         | 1" dia.   | 238.4 mm                     | 20.6 mm             | 10.1 µm                   | 163.06  | plano | 4.0                 |
| LL-25-240N-λ                        | 1" dia.   | -238.4 mm                    | 20.6 mm             |                           | -163.06 | plano | 3.5                 |
| LL-25-300-λ                         | 1" dia.   | 298.1 mm                     | 24.3 mm             | 10.7 µm                   | 203.91  | plano | 4.0                 |
| LL-25-380-λ                         | 1" dia.   | 381.4 mm                     | 24.3 mm             | 13.6 µm                   | 260.90  | plano | 4.0                 |
| LL-25-475-λ                         | 1" dia.   | 477.0 mm                     | 24.3 mm             | 17.0 µm                   | 326.28  | plano | 4.0                 |
| LL-25-610-λ                         | 1" dia.   | 620.1 mm                     | 24.3 mm             | 21.8 µm                   | 424.15  | plano | 4.0                 |
| LL-25-760-λ                         | 1" dia.   | 757.6 mm                     | 24.3 mm             | 27.2 µm                   | 518.17  | plano | 4.0                 |
| LL-25-1000-λ                        | 1" dia.   | 1010.2 mm                    | 24.3 mm             | 35.7 µm                   | 691.00  | plano | 4.0                 |
| LL-51-190-λ                         | 2" dia.   | 189.0 mm                     | 17.3 mm             | 9.5 µm                    | 129.30  | plano | 7.0                 |
| LL-51-240-λ                         | 2" dia.   | 238.4 mm                     | 20.6 mm             | 10.1 µm                   | 163.06  | plano | 6.0                 |
| LL-51-300-λ                         | 2" dia.   | 298.1 mm                     | 24.3 mm             | 10.7 µm                   | 203.91  | plano | 6.0                 |
| LL-51-380-λ                         | 2" dia.   | 381.4 mm                     | 29.0 mm             | 11.4 µm                   | 260.90  | plano | 6.0                 |
| LL-51-475-λ                         | 2" dia.   | 477.0 mm                     | 34.3 mm             | 12.0 µm                   | 326.28  | plano | 5.0                 |
| LL-51-610-λ                         | 2" dia.   | 620.1 mm                     | 41.4 mm             | 12.8 µm                   | 424.15  | plano | 5.0                 |
| LL-51-760-λ                         | 2" dia.   | 757.6 mm                     | 48.8 mm             | 13.5 µm                   | 518.17  | plano | 4.5                 |
| LL-51-1000-λ                        | 2" dia.   | 1010.8 mm                    | 48.8 mm             | 17.8 µm                   | 691.41  | plano | 4.5                 |

NOTE: Other diameters and focal lengths available on custom basis. Please inquire.

### LENSES for YAG LASERS, 1064nm

| Material Fused Silica                                | ANTIREFLECT                 | FION COATING                | Average                   | Power                |
|------------------------------------------------------|-----------------------------|-----------------------------|---------------------------|----------------------|
| Design Wavelength 1064 nm<br>Index at 1064 nm 1.4503 | Wavelength                  | Bandwidth                   | Reflectance               | Rating*              |
| Fused silica transmits 200 nm-2.3 µm                 | 1064 nm<br>*Power rating ba | ±40 nm<br>sed upon 20 n-sec | 0.1-0.2%<br>pulses, 20 Hz | 2 GW/cm <sup>2</sup> |
|                                                      |                             |                             |                           |                      |

To order without AR coating, simply drop "-YAG". Thus, LLQ 25-125, for example.

| Catalog         |                       | Focal      | Ontimum  | Theoretical |         |          | Contor    |
|-----------------|-----------------------|------------|----------|-------------|---------|----------|-----------|
| Focal Length    | Size                  | at 1064 nm | Beam Dia | Focal Spot  | R1 mm   | R2 mm    | Thickness |
| LLQ-13-20-YAG   | <sup>1</sup> ⁄2" dia. | 20.0 mm    | 3.6 mm   | 7.5 μm      | 10.53   | -54.39   | 4.0       |
| LLQ-13-20N-YAG  | 1⁄2" dia.             | -20.1 mm   | 3.6 mm   |             | -10.53  | 61.44    | 2.0       |
| LLQ-13-25-YAG   | 1⁄2" dia.             | 25.1 mm    | 4.2 mm   | 8.0 µm      | 13.58   | -62.37   | 3.0       |
| LLQ-13-25N-YAG  | 1⁄2" dia.             | -25.0 mm   | 4.2 mm   |             | -14.00  | 59.70    | 2.1       |
| LLQ-13-40-YAG   | 1⁄2" dia.             | 30.0 mm    | 6.0 mm   | 9.0 µm      | 21.64   | -88.33   | 3.0       |
| LLQ-13-40N-YAG  | 1⁄2" dia.             | -40 1 mm   | 6.0 mm   |             | -22.80  | 88.33    | 2.0       |
| LLQ-25-63-YAG   | 1" dia.               | 63.0 mm    | 8.4 mm   | 10.1 µm     | 34.74   | -146.20  | 5.5       |
| LLQ-25-63N-YAG  | 1" dia.               | -62.1 mm   | 8.4 mm   |             | -34.18  | 156.96   | 2.5       |
| LLQ-25-80-YAG   | 1" dia.               | 80.4 mm    | 10.1 mm  | 10.7 µm     | 44.62   | -184.18  | 5.0       |
| LLQ-25-80N-YAG  | 1" dia.               | -80.3 mm   | 10.1 mm  |             | -45.11  | 184.18   | 2.5       |
| LLQ-25-100-YAG  | 1" dia.               | 99.8 mm    | 11.9 mm  | 11.4 µm     | 55.80   | -223.16  | 5.0       |
| LLQ-25-100N-YAG | 1" dia.               | -98.9 mm   | 11.9 mm  |             | -55.80  | 223.16   | 3.0       |
| LLQ-25-125-YAG  | 1" dia.               | 124.5 mm   | 14.1 mm  | 12.0 µm     | 69.50   | -282.77  | 5.0       |
| LLQ-25-125N-YAG | 1" dia.               | -124.9 mm  | 14.1 mm  |             | -69.50  | 297.94   | 3.0       |
| LLQ-25-140-YAG  | 1" dia.               | 141.1 mm   | 15.3 mm  | 12.4 µm     | 75.77   | -385.44  | 4.5       |
| LLQ-25-140N-YAG | 1" dia.               | -140.3 mm  | 15.3 mm  |             | -77.09  | 353.46   | 3.0       |
| LLQ-25-160-YAG  | 1" dia.               | 160.1 mm   | 17.0 mm  | 12.7 µm     | 86.53   | -424.15  | 4.5       |
| LLQ-25-160N-YAG | 1" dia.               | -159.4 mm  | 17.0 mm  |             | -86.53  | 424.15   | 3.0       |
| LLQ-25-190-YAG  | 1" dia.               | 189.0 mm   | 19.3 mm  | 13.3 µm     | 106.01  | -424.15  | 4.5       |
| LLQ-25-190N-YAG | 1" dia.               | -190.1 mm  | 19.3 mm  |             | -103.44 | 498.40   | 3.0       |
| LLQ-25-240-YAG  | 1" dia.               | 240.2 mm   | 23.0 mm  | 14.1 µm     | 128.47  | -674.00  | 4.5       |
| LLQ-25-300-YAG  | 1" dia.               | 303.9 mm   | 23.0 mm  | 17.6 µm     | 136.75  | plano    | 4.0       |
| LLQ-25-380-YAG  | 1" dia.               | 383.2 mm   | 23.0 mm  | 22.3 µm     | 172.45  | plano    | 4.0       |
| LLQ-25-475-YAG  | 1" dia.               | 471.0 mm   | 23.0 mm  | 27.9 µm     | 211.93  | plano    | 4.0       |
| LLQ-25-610-YAG  | 1" dia.               | 598.1 mm   | 23.0 mm  | 35.8 µm     | 269.13  | plano    | 4.0       |
| LLQ-25-760-YAG  | 1" dia.               | 750.5 mm   | 23.0 mm  | 44.7 µm     | 337.71  | plano    | 4.0       |
| LLQ-25-1000-YAG | 1" dia.               | 1022.2 mm  | 23.0 mm  | 58.8 µm     | 460.00  | plano    | 4.0       |
| LLQ-51-150-YAG  | 2" dia.               | 150.3 mm   | 16.2.mm  | 12.5 µm     | 81.50   | -385.44  | 8.0       |
| LLQ-51-190-YAG  | 2" dia.               | 189.2 mm   | 19.3 mm  | 13.3 µm     | 106.01  | -424.15  | 7.0       |
| LLQ-51-240-YAG  | 2" dia.               | 238.8 mm   | 23.0 mm  | 14.1 µm     | 130.57  | -598.30  | 6.5       |
| LLQ-51-240N-YAG | 2" dia.               | -240.7 mm  | 23.0 mm  |             | -132.50 | 598.30   | 4.0       |
| LLQ-51-300-YAG  | 2" dia.               | 299.0 mm   | 27.2 mm  | 14.9 µm     | 163.06  | -760.00  | 6.5       |
| LLQ-51-380-YAG  | 2" dia.               | 380.6 mm   | 32.4 mm  | 15.8 µm     | 203.91  | -1061.04 | 5.5       |
| LLQ-51-475-YAG  | 2" dia.               | 474.6 mm   | 38.3 mm  | 16.8 µm     | 263.43  | -1120.49 | 5.5       |
| LLQ-51-610-YAG  | 2" dia.               | 628.2 mm   | 46.3 mm  | 17.8 µm     | 282.69  | plano    | 5.0       |
| LLQ-51-760-YAG  | 2" dia.               | 750.5 mm   | 46.3 mm  | 22.2 µm     | 337.71  | plano    | 4.5       |
| LLQ-51-1000-YAG | 2" dia.               | 1022.2 mm  | 46.3 mm  | 29.2 µm     | 460.00  | plano    | 4.5       |

NOTE: Other diameters and focal lengths available on custom basis. Please inquire.

# Air-Spaced Doublet Lens Assemblies

### **UV-VIS Achromatic**

Over the years, we have designed many unique achromatic lens systems and collimators to cover the UV through visible. These designs include monochromator input collimators, imaging systems and other specially designed systems.

Please inquire about our library of such designs. It is possible that we have already built a system to meet a special application.

Utilizing such a design or a modification thereof may likely avoid the expense of a new design.

Below are listed some of our standard UV–VIS Achromatic Lenses. These are corrected for the infinite conjugate, that is optimized for focusing an infinitely distant object, or for collimating from a point source at the focal point. PLEASE NOTE: Because light sources are extended, that is of finite size, it is difficult to describe image quality in terms of theoretical blur-circles.

These are air-spaced doublets consisting of one element of calcium fluoride with the other of UV grade fused silica, uncoated, mounted in our standard black anodized cell.

Design details available on request.

| Catalog<br>Number | Clear<br>Aperture | Focal<br>Length | Design<br>Spectrum | Cell<br>Dimension |
|-------------------|-------------------|-----------------|--------------------|-------------------|
| LAU-25-100        | 22 mm dia.        | 100 mm          | 200 - 500 nm       | 1.3 dia. x ¾"     |
| LAU-25-200        | 22 mm dia.        | 200 mm          | 200 - 500 nm       | 1.3 dia. x ¾"     |
| LAU-51-200        | 48 mm dia.        | 200 mm          | 200 - 500 nm       | 2.3 dia. x 1"     |

### Visible Achromatic

Our two-element, air-spaced achromats are designed for diffraction-limited focusing in the visible spectrum. The lenses are mounted in a blackanodized cell. All four surfaces are antireflection coated for the visible spectrum so that transmittance exceeds 96%. These are "fast" lenses, being f/4, and designed for focusing or collimating.

| Catalog         | Effective    | Back<br>Focal | Clear    |        | Lens 1, | BK7   |      | , Le    | ens 2, SF1 <sup>.</sup> | 1     | , Cell                                      |
|-----------------|--------------|---------------|----------|--------|---------|-------|------|---------|-------------------------|-------|---------------------------------------------|
| Number          | Focal Length | Length        | Aperture | R1     | R2      | Ct    | TAIR | R3      | R4                      | Ct    | Dimensions                                  |
| LLA-25-100-VIS  | 100 mm       | 95.08         | 22 mm    | 57.87  | -62.37  | 4.50  | 0.24 | -58.07  | -121.45                 | 4.00  | 1.5" dia. x 1/2"                            |
| LLA-51-200-VIS  | 200 mm       | 196.32        | 48 mm    | 114.88 | -136.75 | 9.30  | 3.00 | -121.45 | -269.13                 | 5.80  | 2.5" dia. x 1"                              |
| LLA-76-300-VIS  | 300 mm       | 280.36        | 73 mm    | 163.06 | -198.00 | 11.00 | 6.20 | -172.29 | -385.44                 | 8.00  | 3.5" dia. x 11/2"                           |
| LLA-102-400-VIS | 400 mm       | 382.66        | 99 mm    | 211.99 | -282.80 | 19.00 | 5.10 | -249.40 | -598.00                 | 6.20  | 4.5" dia. x 1 <sup>3</sup> / <sub>4</sub> " |
| LLA-152-600-VIS | 600 mm       | 585.60        | 149 mm   | 353.34 | -385.45 | 20.0  | 0.35 | -357.19 | -735.50                 | 12.00 | 7.0" dia. x 2                               |

### **Laser Collimators**

Our Laser Collimator Lenses are designed for monochromatic operation at any laser wavelength from 400 nm to  $1.5 \,\mu$ m, and will focus within diffraction-limit theory.

These "fast" f/4 air-spaced doublets are mounted in a black anodized cell. All surfaces are antireflection coated so that transmittance will exceed 96% at the specified wavelength of operation.

When ordering, specify wavelength for antireflection coatings. Other Laser Collimator Lenses are available. Please inquire.



| Catalog                        | Focal          | Back<br>Focal | Clear           | I.     | Lens 1, | BK7   |                  | L       | ens 2, SF1 | 1    | Cell              |
|--------------------------------|----------------|---------------|-----------------|--------|---------|-------|------------------|---------|------------|------|-------------------|
| Number                         | Length         | Length        | Aperture        | R1     | R2      | Ct    | T <sub>AIR</sub> | R3      | R4         | Ct   | Dimensions        |
| LLS-25-100-λ                   | 100mm          | 95.08         | 22 mm           | 57.87  | -62.37  | 4.50  | 0.24             | -58.07  | -121.45    | 4.00 | 1.5" dia. x 1/2"  |
| LLS-51-200-λ                   | 200mm          | 196.32        | 47 mm           | 114.88 | -136.75 | 9.30  | 3.00             | -121.45 | -269.13    | 5.80 | 2.5" dia. x 1"    |
| LLS-76-300-λ                   | 300mm          | 280.36        | 72 mm           | 163.06 | -198.00 | 11.00 | 6.20             | -172.29 | -385.44    | 8.00 | 3.5" dia. x 11/2" |
| LLS-102-400-λ                  | 400mm          | 382.66        | 98 mm           | 211.99 | -282.80 | 19.00 | 5.10             | -249.40 | -598.00    | 6.20 | 4.5" dia. x 13/4" |
| LLS-152-600-λ                  | 600mm          | 575.40        | 147 mm          | 328.89 | -471.12 | 21.00 | 1.40             | -385.45 | -1500.00   | 16.3 | 7.0" dia. x 2"    |
| NOTE: specify $\lambda$ from 4 | 400nm to 1.5 j | um, for exam  | ple LLS-25-100- | 633.   |         |       |                  |         |            |      |                   |

## **Cylindrical Lenses**

OFR manufactures plano-convex/concave Cylindrical Lenses in Grade A BK7 glass, Excimer Grade  $CaF_2$ , and UV Grade Fused Silica.





Profile, cylindrical lens

## ULTRAVIOLET CYLINDRICAL LENSES for ArF Laser, 193 nm (Excimer-Grade CaF<sub>2</sub>)

| Catalog<br>Number | Focal<br>Length | Width x Length |
|-------------------|-----------------|----------------|
| LCV-15x20-20      | 20 mm           | 15 x 20 mm     |
| LCV-20x20-40      | 40 mm           | 20 x 20 mm     |
| LCV-20x20-80      | 80 mm           | 20 x 20 mm     |
| LCV-20x20-100     | 100 mm          | 20 x 20 mm     |
| LCV-20x20-200     | 200 mm          | 20 x 20 mm     |

Other diameters and focal lengths, and negative focal lengths, available on custom basis. Please Inquire.

## CYLINDRICAL LENSES for Excimer & UV Lasers, 193 nm-355 nm (UV-Grade Fused Silica)

| Catalog<br>Number | Focal<br>Length | Width x Length | Laser<br>ArF | <u>λ</u><br>193 nm |
|-------------------|-----------------|----------------|--------------|--------------------|
| LCU-15x20-20      | 20 mm           | 15 x 20 mm     | KrF          | 248 nm             |
| LCU-20x20-40      | 40 mm           | 20 x 20 mm     | Nd:YAG       | 266 nm             |
| LCU-20x20-80      | 80 mm           | 20 x 20 mm     | HeCd         | 325 nm             |
| LCU-20x20-100     | 100 mm          | 20 x 20 mm     | N2           | 337 nm             |
| LCU-20x20-200     | 200 mm          | 20 x 20 mm     | XeF          | 351 nm             |
|                   |                 |                | Nd:YAG       | 355 nm             |

Other diameters and focal lengths, and negative focal lengths, available on custom basis. Please Inquire.

#### CYLINDRICAL LENSES for 400nm-2.5 µm (Grade A BK7 Glass)

| Positive<br>Focal Length<br>Catalog Number | Negative<br>Focal Length<br>Catalog Number | Focal<br>Length          | Width x Length           |
|--------------------------------------------|--------------------------------------------|--------------------------|--------------------------|
| LC-4x5-4                                   |                                            | 4 mm                     | 4 x 5 mm                 |
| LC-7x10-8                                  | LC-7x10-8N                                 | 8 mm                     | 7 x 10 mm                |
| LC-10x10-10                                | —                                          | 10 mm                    | 10 x 10 mm               |
| LC-10x20-15                                | LC-10x10-15N                               | 15 mm                    | 10 x 20 mm               |
| LC-15x20-20                                |                                            | 20 mm                    | 15 x 20 mm               |
| LC-20x20-25                                | LC-20x20-25N                               | 25 mm                    | 20 x 20 mm               |
| LC-20x20-40                                | LC-20x20-40N                               | 40 mm                    | 20 x 20 mm               |
| LC-20x20-60                                | LC-20x20-60N                               | 60 mm                    | 20 x 20 mm               |
| LC-20x20-80                                | —                                          | 80 mm                    | 20 x 20 mm               |
| LC-20x20-100                               | LC-20x20-100N                              | 100 mm                   | 20 x 20 mm               |
| LC-20x20-150                               |                                            | 150 mm                   | 20 x 20 mm               |
| LC-20x20-200                               | —                                          | 200 mm                   | 20 x 20 mm               |
| LC-20x20-300                               |                                            | 300 mm                   | 20 x 20 mm               |
| LC-20x20-500                               |                                            | 500 mm                   | 20 x 20 mm               |
| LC-20x20-1000                              |                                            | 1000 mm                  | 20 x 20 mm               |
| Other diameters and focal                  | l lengths, and negative focal leng         | gths, available on custo | m basis. Please Inquire. |

#### CYLINDRICAL LENSES for High Power YAG Lasers, 1064 nm (Fused Silica)

| Positive<br>Focal Length<br>Catalog Number | Negative<br>Focal Length<br>Catalog Number | Focal<br>Length | Width x Length |  |  |  |  |  |  |
|--------------------------------------------|--------------------------------------------|-----------------|----------------|--|--|--|--|--|--|
| LCQ-10x10-10                               |                                            | 10 mm           | 10 x 10 mm     |  |  |  |  |  |  |
| LCQ-10x20-15                               | LC-10x10-15N                               | 15 mm           | 10 x 20 mm     |  |  |  |  |  |  |
| LCQ-15x20-20                               |                                            | 20 mm           | 15 x 20 mm     |  |  |  |  |  |  |
| LCQ-20x20-25                               | LC-20x20-25N                               | 25 mm           | 20 x 20 mm     |  |  |  |  |  |  |
| LCQ-20x20-40                               | LC-20x20-40N                               | 40 mm           | 20 x 20 mm     |  |  |  |  |  |  |
| LCQ-20x20-60                               | LC-20x20-60N                               | 60 mm           | 20 x 20 mm     |  |  |  |  |  |  |
| LCQ-20x20-80                               | —                                          | 80 mm           | 20 x 20 mm     |  |  |  |  |  |  |
| LCQ-20x20-100                              | LC-20x20-100N                              | 100 mm          | 20 x 20 mm     |  |  |  |  |  |  |
| LCQ-20x20-150                              |                                            | 150 mm          | 20 x 20 mm     |  |  |  |  |  |  |
| LCQ-20x20-200                              |                                            | 200 mm          | 20 x 20 mm     |  |  |  |  |  |  |
| A.I. I                                     |                                            |                 |                |  |  |  |  |  |  |

Other diameters and focal lengths, and negative focal lengths, available on custom basis. Please Inquire.

# **Microscope Objectives**

### **Microscope Objectives, VIS-NIR**

OFR stocks this fine line of exceptionally high quality Microscope Objective Lens assemblies, which are ideally suited for focusing laser beams to spot sizes not otherwise achievable with standard optics, as well as for their original use in magnification systems. Our Microscope Objective Lenses are contained in very fine, brushed chrome-plated brass barrels with the industry standard RMS (Royal Microscopy Society) Whitworth screw thread. We also provide our LMO-51 Mounting Plate with this unique thread.

These are for use with low-power, visible to near-IR sources. For UV excimer and high power YAG laser applications, please see **MicroSpot FOCUSING OBJECTIVES**.

| Catalog<br>Number | Description    | Size         |
|-------------------|----------------|--------------|
| LMO-51            | Mounting Plate | 2" dia. x ½" |



LMO-51 Mounting Plate



LMO Objectives, AR coated for visible spectrum

| Catalog<br>Number | Magnification | Approx.<br>Limiting<br>Resolution | Effective<br>Focal<br>Length | Working<br>Distance | Numerical<br>Aperture | Angular<br>Aperture |
|-------------------|---------------|-----------------------------------|------------------------------|---------------------|-----------------------|---------------------|
| LMO-2X            | 2X            | 7 μm                              | 47 mm                        | 48/49 mm            | 0.07                  | 8°                  |
| LMO-5X            | 5X            | 4 µm                              | 30 mm                        | 18/20 mm            | 0.12                  | <b>1</b> 4°         |
| LMO-10X           | IOX           | 2 µm                              | 16 mm                        | 5/6 mm              | 0.30                  | 35°                 |
| LMO-20X           | 20X           | 1 µm                              | 9 mm                         | 1.6/1.8 mm          | 0.45                  | 53°                 |
| LMO-40X           | 40X           | 0.8 µm                            | 5 mm                         | 0.6/0.8 mm          | 0.65                  | 81°                 |
| LMO-60X           | 60X           | 0.2 µm                            | 3 mm                         | 0.25/0.35 mm        | 0.85                  | 116°                |

# Fiber-Optic Coupling Lenses

**MOUNTED LLO SERIES LENSES** are A/R coated and mounted in a Microscope Objective Cell with industry standard RMS thread. Other mounting options available. Please inquire.

**UNMOUNTED LL SERIES LENSES,** as above, but unmounted. See page FO-16 in FIBER-OPTIC PRODUCTS section.



#### MOUNTED DOUBLE-ASPHERIC LENSES

| Catalog<br>Number    | Focal<br>Length | Working<br>Distance | Numerical<br>Aperture | Maximum<br>Beam Dia. | Magnification |
|----------------------|-----------------|---------------------|-----------------------|----------------------|---------------|
| LLO-4-18-λ*          | 18.4 mm         | 17.0 mm             | 0.13                  | 4.4 mm               | 10X           |
| LLO-6-11-λ           | 11.0 mm         | 9.1 mm              | 0.30                  | 6.5 mm               | 16X           |
| LLO-8-8-λ*           | 8.0 mm          | 5.5 mm              | 0.50                  | 8.0 mm               | 20X           |
| LLO-4-7-λ            | 7.5 mm          | 5.5 mm              | 0.30                  | 4.5 mm               | 24X           |
| LLO-4-4-λ            | 4.6 mm          | 2.4 mm              | 0.53                  | 4.8 mm               | 40X           |
| LLO-2-2-λ*           | 2.0 mm          | 0.9 mm              | 0.50                  | 2.0 mm               | 60X           |
| *Not ovoilable for I | INVAC NOTE W    | han andaning ana    | aifalanath fa         |                      |               |

Not available for HoYAG. NOTE: When ordering, specify wavelength, for example, LLO-4-4-NIR.

#### UNMOUNTED DOUBLE-ASPHERIC LENSES

| Catalog<br>Number  | Focal<br>Length | Back Focal<br>Length | Center<br>Thickness | Numerical<br>Aperture | Diameter |
|--------------------|-----------------|----------------------|---------------------|-----------------------|----------|
| LL-3-2*-λ          | 2.0 mm          | 0.9 mm               | 2.0                 | 0.50                  | 3.0 mm   |
| LL-5-7-λ           | 7.5 mm          | 5.8 mm               | 2.7                 | 0.30                  | 5.5 mm   |
| LL-6-11-λ          | 11.0 mm         | 9.6 mm               | 2.2                 | 0.30                  | 6.0 mm   |
| LL-6-5-λ           | 4.6 mm          | 2.9 mm               | 3.1                 | 0.53                  | 6.0 mm   |
| *Net available for |                 | han and an an ar     | if was also at a fe |                       | D        |

\*Not available for HoYAG. NOTE: When ordering, specify wavelength, for example, LL-3-2-IR.

| Ма  | x T Spectrum         | Order as                     |
|-----|----------------------|------------------------------|
| 38  | 0 - 640 nm           | -VIS                         |
| 60  | 0 - 990 nm           | -NIR                         |
| 97  | 0 - 1100 nm          | -YAG                         |
| 12  | 50 - 1600 nm         | -IR                          |
| 1.9 | ) - 2.15 µm          | -HoYAG*                      |
| *11 | -3-2 11 0-2-2 and 11 | O-8-8 not available for HoYA |

## Laser Beam Expanders

We have subdivided our Laser Beam Expanders into three basic wavelength ranges: UV LASERS, VIS-NIR LASERS, and HIGH-POWER LASERS (primarily Nd:YAG).

OFR manufactures Laser Beam Expanders which are basically customassembled according to specific requirements of the application. The telescope body consists of two black anodized, close-fitting tubes which rotate in or out of each other, locking screws, and a matched pair of Lenses: the Input Expander and the Output Collimator. Actually, these Lenses are based on our minimum aberration BestForm Laser Lenses (see page OC-3) which are matched so as to produce a collimated beam whose wavefront distortion is consistent with diffraction theory, namely 1/4-wave or better.

The simple telescope body enables adjustment of the spacing between the lenses for focusing, collimating or diverging.

In general, we can match any combination of our BestForm Lenses to meet a very wide variety of conditions and expansion ratios from 2.5X to 50X.

The Lenses are multilayer antireflection coated for peak transmittance of > 96% through the pair.

We will specifically fabricate custom brackets or adapters to fit the telescope to existing apparatus as required.

The EL-25-series and ELQ-25-series Telescopes are 1.5" diameter x 4" long expanding to 7" long depending upon lens combinations required. Likewise, the EL-51-series and the ELQ -51-series are 2.5" diameter x 8" long expanding to 12" long.



### **UV Laser Beam Expanders**

OFR BestForm Laser Lenses (see page OC-4), selected from our LLU-Series, are made in UV grade fused silica. Lenses are AR coated at peak wavelength, with transmittance >96%.

| Laser               | <u>λ(nm)</u> |
|---------------------|--------------|
| KrF                 | 248          |
| Nd:YAG              | 266          |
| XeCl                | 308          |
| HeCd/N <sub>2</sub> | 325/337      |
| XeF                 | 351          |

| Catalog<br>Number                                                                                                                                                  | Expansion<br>Ratio | Max. Input<br>Beam Dia.* | Output<br>Aperture |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------|--------------------|
| ELU-25-2.5X-λ                                                                                                                                                      | 2.5X               | 4 mm                     | 22 mm              |
| ELU-25-5Χ-λ                                                                                                                                                        | 5X                 | 3 mm                     | 22 mm              |
| ELU-25-10X-λ                                                                                                                                                       | 10X                | 2 mm                     | 22 mm              |
| ELU-25-20X-λ                                                                                                                                                       | 20X                | 1 mm                     | 22 mm              |
| ELU-51-25Χ-λ                                                                                                                                                       | 25X                | 1.5 mm                   | 48 mm              |
| $\lambda$ : When ordering, specify wavelength for AR coatings.<br>*Exceeding "Maximum Input Beam Diameter" will increase wavefront distortion beyond $\lambda/4$ . |                    |                          |                    |

### **VIS-NIR LASER BEAM EXPANDERS**

Please see page OC-5 for descriptions of our LL-Series of BestForm Laser Lenses which are selected for the optimum combinations to achieve both expansion ratio and a diffraction-limited output wavefront. Both surfaces of each lens are broadband antireflection coated to cover the spectrum as shown in the following table. Anywhere in the specified spectrum, the Beam Expander will transmit > 96%.

| Catalog<br>Number | Expansion<br>Ratio | Max. Input<br>Beam Dia.* | Output<br>Aperture |
|-------------------|--------------------|--------------------------|--------------------|
| EL-25-2.5X-λ      | 2.5X               | 4 mm                     | 22 mm              |
| EL-25-5Χ-λ        | 5X                 | 3 mm                     | 22 mm              |
| EL-25-10Χ-λ       | 10X                | 2 mm                     | 22 mm              |
| EL-25-20Χ-λ       | 20X                | 1 mm                     | 22 mm              |
| EL-51-25Χ-λ       | 25X                | 1.5 mm                   | 48 mm              |

 $\lambda$ : When ordering, specify wavelength for AR coatings.

\*Exceeding "Maximum Input Beam Diameter" will increase wavefront distortion beyond  $\lambda/4$ . Other wavelengths available.

| Laser      | Bandwidth     | Order a |
|------------|---------------|---------|
| Visible    | 425 - 675 nm  | -VIS    |
| Gas/Dye    | 550 - 780 nm  | -VIR    |
| NIR Diodes | 750 - 950 nm  | -NIR    |
| IR Diodes  | 1250 -1550 nm | -IR     |

### **High-Power YAG Beam Expanders**

The lenses selected for use in this series are our minimum aberration LLQ-Series which are described on page OC-6. These lenses are in optical grade fused silica; the multilayer antireflection coatings are peaked at 1064 nm below, and the pair of lenses will transmit > 96%.

| Laser  | <u>λ(nm)</u> |
|--------|--------------|
| Nd:YAG | 1064         |

| Catalog<br>Number | Expansion<br>Ratio | Max. Input<br>Beam Dia.* | Output<br>Aperture |
|-------------------|--------------------|--------------------------|--------------------|
| ELQ-25-2.5X-YAG   | 2.5X               | 4 mm                     | 22 mm              |
| ELQ-25-5X-YAG     | 5X                 | 3 mm                     | 22 mm              |
| ELQ-25-10X-YAG    | 10X                | 2 mm                     | 22 mm              |
| ELQ-25-20X-YAG    | 20X                | 1 mm                     | 22 mm              |
| ELQ-51-7.5X-YAG   | 7.5X               | 6 mm                     | 48 mm              |
| ELQ-51-10X-YAG    | 10X                | 4 mm                     | 48 mm              |
| ELQ-51-15X-YAG    | 15X                | 3 mm                     | 48 mm              |
| ELQ-51-20X-YAG    | 20X                | 2 mm                     | 48 mm              |
| ELQ-51-40X-YAG    | 40X                | 1 mm                     | 48 mm              |

\*Exceeding "Maximum Input Beam Diameter" will increase wavefront distortion beyond  $\lambda/4$ .



OFR will design and build custom Beam Expanders. Please inquire.

# Flat-Top Apodizer (gaussian compensating plate), vis-nir

For applications in which it is necessary to equalize the energy density across an expanded laser beam, the Flat-Top Apodizer Plate utilizes a plano-convex, neutral gray glass lens cemented against a planoconcave, clear glass lens. The result is a plane-parallel plate with a radially-varying neutral attenuation. With a correctly expanded beam, this combination produces a "flat-top" energy distribution from a Gaussian beam, with ~35% of the original laser power retained.

Antireflection coatings are not available.

| Catalog<br>Number | Dimensions           |
|-------------------|----------------------|
| GC-25             | 1" dia. x 1/4" thick |
| GC-51             | 2" dia. x 1/4" thick |
|                   | failer .             |
|                   |                      |
|                   |                      |
|                   |                      |
| dires.            | 5                    |



# **Front-Surface Mirrors**

OFR manufactures and maintains a stock of standard Front-Surface Mirrors, with opaque, vacuum-deposited metallic coatings on low-expansion glass substrates. These coatings are not intended for high-power laser applications.

| Material   | Pyrex         |
|------------|---------------|
| Dimensions |               |
| Diameter   | +0,-0.1 mm    |
| Thickness  | ±0.1 mm       |
| Parallel   | 3-5'          |
| Optical    |               |
| Flatness   | 1/4-1/10 wave |
| Polish     | 20/10         |
| Rear       | Fine ground   |



### **Front-Surface Metallic Coatings**

#### Ultraviolet (MU)

This is an aluminum coating with a thin film of magnesium fluoride overcoat which protects the aluminum and is reflective to the short wavelengths. This coating can be somewhat delicate, and care should be taken when cleaning.

#### Visible-Near Infrared (M)

This is the most common of the "aluminized" mirror coatings. It is an aluminum coating with a protective overcoat of SiO.

#### Hard Gold (MR)

This hard gold coating is intended for the infrared. It is not always necessary to go to the expense of the gold coating if the standard aluminum coating performs as well. Please inquire.

#### **High Reflectance (MH)**

This is also a Visible-Near IR coating, except that the reflectance in the visible spectrum is enhanced with dielectric overlayers.



#### ULTRAVIOLET MIRRORS (160 nm to Far IR)

This coating is delicate, with a very thin layer of  $M_gF_2$  over the aluminum film to prevent oxidation. These will not withstand high energy excimer laser radiation. Clean carefully with methanol or acetone.

| Catalog<br>Number | Spectral<br>Range | Dimensions   | Coating/<br>overcoat      | Reflectance | Surface<br>Flatness |
|-------------------|-------------------|--------------|---------------------------|-------------|---------------------|
| MU-25             | 160 nm - Far IR   | 1" dia. x ¼" | Aluminum/MgF <sub>2</sub> | 60-90%      | 1/4-wave            |
| MU-51             | 160 nm - Far IR   | 2" dia. x ¼" | Aluminum/MgF <sub>2</sub> | 60-90%      | 1/4-wave            |

#### VISIBLE MIRRORS (380 nm to Far IR)

Our Standard Mirrors, with protective silicon monoxide overcoat on the aluminum film, meet eraser and adherence tests, with reflectance greater than 86% throughout the visible spectrum. Because of a small absorption dip near 800 nm, we recommend our IR Mirrors (see next group below) for use with NIR sources.

| Catalog<br>Number | Spectral<br>Range | Dimensions   | Coating/<br>overcoat | Reflectance | Surface<br>Flatness |
|-------------------|-------------------|--------------|----------------------|-------------|---------------------|
| M-25              | 380 nm - Far IR   | 1" dia. x ¼" | Aluminum/SiO         | Above 86%   | 1/4-wave            |
| M-51              | 380 nm - Far IR   | 2" dia. x ¼" | Aluminum/SiO         | throughout  | 1/4-wave            |
| M-76              | 380 nm - Far IR   | 3" dia. x ½" | Aluminum/SiO         | visible     | 1/4-wave            |
| M-102             | 380 nm - Far IR   | 4" dia. x ¾" | Aluminum/SiO         | spectrum    | 1/4-wave            |
| M-152             | 380 nm - Far IR   | 6" dia. x 1" | Aluminum/SiO         |             | 1/4-wave            |

#### INFRARED MIRRORS (700 nm to Far IR)

Our Infrared Mirrors have hard, scratchresistant gold mirror coatings giving a maximum of reflectance throughout the near and far IR to an average of 98.5%.

| Catalog<br>Number | Spectral<br>Range | Dimensions   | Coating/<br>overcoat | Reflectance | Surface<br>Flatness |
|-------------------|-------------------|--------------|----------------------|-------------|---------------------|
| MR-25             | 700 nm - Far IR   | 1" dia. x ¼" | Protected Gold       | 98.5%       | 1/4-wave            |
| MR-51             | 700 nm - Far IR   | 2" dia. x ¼" | Protected Gold       | 98.5%       | 1/4-wave            |

# HIGH-REFLECTANCE MIRRORS (425 nm to Far IR)

This aluminized Mirror has dielectric overlayers which enhance reflectance in the visible spectrum to an average of 95% and which increases to 98% in the IR.

| Catalog<br>Number | Spectral<br>Range | Dimensions   | Coating/<br>overcoat | Reflectance | Surface<br>Flatness  |
|-------------------|-------------------|--------------|----------------------|-------------|----------------------|
| MH-25             | 425 nm - Far IR   | 1" dia. x ¼" | Aluminum/dielectric  | Above 95%   | <sup>1</sup> /4-wave |
| MH-51             | 425 nm - Far IR   | 2" dia. x ¼" | Aluminum/dielectric  | Above 95%   | <sup>1</sup> /4-wave |

### LAMBDA-OVER-20 MIRRORS (425 nm to Far IR)

These interferometer-quality mirrors are coated with our High-Reflectance Coating.

| Catalog<br>Number | Spectral<br>Range | Dimensions   | Coating /overcoat   | Reflectance | Surface<br>Flatness |
|-------------------|-------------------|--------------|---------------------|-------------|---------------------|
| MI-25             | 425 nm - Far IR   | 1" dia. x ¼" | Aluminum/dielectric | Above 95%   | 1/20-wave           |
| MI-51             | 425 nm - Far IR   | 2" dia. x ½" | Aluminum/dielectric | Above 95%   | 1/20-wave           |
| MI-76             | 425 nm - Far IR   | 3" dia. x ½" | Aluminum/dielectric | Above 95%   | 1/20-wave           |
| MI-102            | 425 nm - Far IR   | 4" dia. x ¾" | Aluminum/dielectric | Above 95%   | 1/20-wave           |
| MI-152            | 425 nm - Far IR   | 6" dia. x 1" | Aluminum/dielectric | Above 95%   | 1/20-wave           |

# **Dielectric Laser Coatings**

Most of the OFR optical components are supplied coated; we will also apply coatings as requested on any of our normally uncoated parts. The following tables describe our dielectric coatings.



100

### **Reflection and Partial Reflection Coatings**

| NARROWBAND        | COATINGS | Bandwidth shown | is at + 5% of    | peak |
|-------------------|----------|-----------------|------------------|------|
| INALITIO II DAILD | COALINGO | Danuwiuth Shown | 1 13 at ± 070 01 | pear |

| Ordering<br>Description | Select λ<br>Between | Bandwidth | Maximum<br>Reflectance | Power<br>Rating*       |
|-------------------------|---------------------|-----------|------------------------|------------------------|
| UV                      | 193-400 nm          | 6-8%      | 99.5%                  | 300 MW/cm <sup>2</sup> |
| VIS-NIR                 | 400 nm-2.0 µm       | 20%       | 99.5%                  | 500 MW/cm <sup>2</sup> |
| HIGH-POWER              | 400 nm-2.0 µm       | 10%       | 99.8%                  | 500 MW/cm <sup>2</sup> |

BROADBAND COATINGS Bandwidth per table below.

| Ordering<br>Description | Bandwidth                    | Average<br>Reflectance | Power<br>Rating*       |
|-------------------------|------------------------------|------------------------|------------------------|
| VIS                     | 450-675 nm                   | 99%                    | 200 MW/cm <sup>2</sup> |
| NIR                     | 700-900 nm                   | 99%                    | 400 MW/cm <sup>2</sup> |
| IR                      | 1250-1550 nm                 | 99%                    | 400 MW/cm <sup>2</sup> |
| *Power rating ba        | sed upon 20 n-sec pulses, 20 | Hz                     |                        |

## **Antireflection Coatings**

| NARROWBAND | AR | COATINGS | Bandwidth | shown | is a | at ± 5% | of peak |
|------------|----|----------|-----------|-------|------|---------|---------|
|------------|----|----------|-----------|-------|------|---------|---------|

| Ordering<br>Description | Select λ Between | Bandwidth | Maximum<br>Reflectance | Power<br>Rating*       |
|-------------------------|------------------|-----------|------------------------|------------------------|
| VUV                     | 193 nm           | ± 2nm     | < 0.7%                 | 400 MW/cm <sup>2</sup> |
| UV                      | 220-400 nm       | 8%        | < 0.3%                 | 500 MW/cm <sup>2</sup> |
| VIS-NIR & HP            | 400 nm - 2.0 µm  | 12%       | 0.1-0.2%               | 2 GW/cm <sup>2</sup>   |
| CO <sub>2</sub>         | 10.6 µm          | 10%       | < 0.5%                 | >800 W/cm <sup>2</sup> |

BROADBAND AR COATINGS Bandwidth per table below.

| Ordering<br>Description | Bandwidth               | Absolute<br>Reflectance | Power<br>Rating*       |
|-------------------------|-------------------------|-------------------------|------------------------|
| UVB                     | 240 - 360 nm            | < 0.5%                  | 200 MW/cm <sup>2</sup> |
| NUV                     | 325 - 500 nm            | < 0.5%                  | 200 MW/cm <sup>2</sup> |
| VIS                     | 450 - 700 nm            | < 0.5%                  | 300 MW/cm <sup>2</sup> |
| VIR                     | 550 - 780 nm            | < 0.5%                  | 300 MW/cm <sup>2</sup> |
| NIR                     | 700 - 950 nm            | < 0.5%                  | 300 MW/cm <sup>2</sup> |
| IR                      | 1250 - 1550 nm          | < 0.5%                  | 300 MW/cm <sup>2</sup> |
| *Power rating b         | ased upon 20 n-sec puls | ses, 20 Hz              |                        |





# **Broadband Reflectors and Beamsplitters**

### Broadband MAX-R Reflectors, 0° & 45°





| VIS REFLECTORS    |             |             |  |  |  |  |
|-------------------|-------------|-------------|--|--|--|--|
| Catalog<br>Number | Dimensions  | Reflectance |  |  |  |  |
|                   |             |             |  |  |  |  |
| MXY-25-VIS        | 1"dia. x ¼" | >99%        |  |  |  |  |

2"dia. x 1/4"

>99%

| e | Damage<br>Threshold                                |
|---|----------------------------------------------------|
|   | >50 MW/cm <sup>2*</sup><br>>50 MW/cm <sup>2*</sup> |

| Material                       | BK7 glass                     |
|--------------------------------|-------------------------------|
| Dimensions                     |                               |
| Diameter                       | +0,-0.1 mm                    |
| Thickness                      | ±0.1 mm                       |
| Parallel                       | 3-5'                          |
| Optical                        |                               |
| Flatness<br>Polish, both sides | <sup>1</sup> ⁄20 wave<br>10/5 |
|                                |                               |

MXY-51-VIS

\*20 ns pulses, 10 Hz



| IIR   | REF | ELE | CT | OR | S |  |
|-------|-----|-----|----|----|---|--|
| 'atal | log |     |    |    |   |  |

ľ

| Number          | Dimensions  | Reflectance | Threshold    |
|-----------------|-------------|-------------|--------------|
| MXY-25-NIR      | 1"dia. x ¼" | >99%        | >350 MW/cm2* |
| MXY-51-NIR      | 2"dia. x ¼" | >99%        | >350 MW/cm2* |
| 20 ns pulses. 1 | 0 Hz        |             |              |



### **Broadband VIS Beamsplitters, 45°**



# **Dielectric Reflectors and Beamsplitters**

OFR manufactures WINDOWS (see page OC- 34) to be coated for Max-R Mirrors, Output Couplers and Beamsplitters.

### MAX-R Laser Line Mirrors, 0°

| 1" dia. X <sup>1</sup> / <sub>4</sub> "<br>Wavelength (nm)<br>Catalog Number | 2" dia. X <sup>1</sup> /4"<br>Wavelength (nm)<br>Catalog Number | Reflectance       | Bandwidth*          | Power<br>Rating**      | Laser  |
|------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------|---------------------|------------------------|--------|
| MX-25-266                                                                    | MX-51-266                                                       | 99.5%             | 6-8%                | 300 MW/cm <sup>2</sup> | Nd:YAG |
| MX-25-351                                                                    | MX-51-351                                                       | 99.5%             | 6-8%                | 300 MW/cm <sup>2</sup> | XeF    |
| MX-25-355                                                                    | MX-51-355                                                       | 99.5%             | 6-8%                | 300 MW/cm <sup>2</sup> | Nd:YAG |
| MX-25-488                                                                    | MX-51-488                                                       | 99.8%             | 10%                 | 500 MW/cm <sup>2</sup> | Ar     |
| MX-25-514                                                                    | MX-51-514                                                       | 99.8%             | 10%                 | 500 MW/cm <sup>2</sup> | Ar     |
| MX-25-532                                                                    | MX-51-532                                                       | 99.8%             | 10%                 | 500 MW/cm <sup>2</sup> | Nd:YAG |
| MX-25-633                                                                    | MX-51-633                                                       | 99.8%             | 10%                 | 500 MW/cm <sup>2</sup> | HeNe   |
| MX-25-780                                                                    | MX-51-780                                                       | 99.8%             | 10%                 | 500 MW/cm <sup>2</sup> | Diode  |
| MX-25-810                                                                    | MX-51-810                                                       | 99.8%             | 10%                 | 500 MW/cm <sup>2</sup> | Diode  |
| MX-25-830                                                                    | MX-51-830                                                       | 99.8%             | 10%                 | 500 MW/cm <sup>2</sup> | Diode  |
| MX-25-850                                                                    | MX-51-850                                                       | 99.8%             | 10%                 | 500 MW/cm <sup>2</sup> | Diode  |
| MX-25-980                                                                    | MX-51-980                                                       | 99.8%             | 10%                 | 500 MW/cm <sup>2</sup> | Diode  |
| MX-25-1053                                                                   | MX-51-1053                                                      | 99.8%             | 10%                 | 500 MW/cm <sup>2</sup> | Nd:YLF |
| MX-25-1064                                                                   | MX-51-1064                                                      | 99.8%             | 10%                 | 500 MW/cm <sup>2</sup> | Nd:YAG |
| MX-25-1310                                                                   | MX-51-1310                                                      | 99.8%             | 10%                 | 500 MW/cm <sup>2</sup> | Diode  |
| MX-25-1319                                                                   | MX-51-1319                                                      | 99.8%             | 10%                 | 500 MW/cm <sup>2</sup> | Diode  |
| MX-25-1540                                                                   | MX-51-1540                                                      | 99.8%             | 10%                 | 500 MW/cm <sup>2</sup> | Diode  |
| *Bandwidth shown is a                                                        | t ± 5% of peak. **Powe                                          | r Rating based on | 20 n-sec pulses, 20 | Hz,                    |        |

# MAX-R Laser Line Mirrors, 45°

| 1" dia. X <sup>1</sup> /4"<br>Wavelength (nm)<br>Catalog Number | 2" dia. X <sup>1</sup> / <sub>4</sub> "<br>Wavelength (nm)<br>Catalog Number | Reflectance | Bandwidth* | Power<br>Rating**      | Laser  |              |                                    |
|-----------------------------------------------------------------|------------------------------------------------------------------------------|-------------|------------|------------------------|--------|--------------|------------------------------------|
| MY-25-193                                                       | MY-51-193                                                                    | 95%         | 3-4%       | 300 MW/cm <sup>2</sup> | ArF    |              |                                    |
| MY-25-212                                                       | MY-51-212                                                                    | 96%         | 3-4%       | 300 MW/cm <sup>2</sup> | Nd:YAG |              | * /                                |
| MY-25-248                                                       | MY-51-248                                                                    | 99%         | 3-4%       | 300 MW/cm <sup>2</sup> | KrF    |              |                                    |
| MY-25-266                                                       | MY-51-266                                                                    | 99.5%       | 3-4%       | 300 MW/cm <sup>2</sup> | Nd:YAG |              |                                    |
| MY-25-325                                                       | MY-51-325                                                                    | 99.5%       | 6-8%       | 300 MW/cm <sup>2</sup> | HeCd   |              |                                    |
| MY-25-351                                                       | MY-51-351                                                                    | 99.5%       | 6-8%       | 300 MW/cm <sup>2</sup> | XeF    |              |                                    |
| MY-25-355                                                       | MY-51-355                                                                    | 99.5%       | 6-8%       | 300 MW/cm <sup>2</sup> | Nd:YAG | Movimum      | Deflectors                         |
| MY-25-488                                                       | MY-51-488                                                                    | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | Ar     | MX           | Sorioo                             |
| MY-25-514                                                       | MY-51-514                                                                    | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | Ar     |              | Series                             |
| MY-25-532                                                       | MY-51-532                                                                    | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | Nd:YAG |              |                                    |
| MY-25-633                                                       | MY-51-633                                                                    | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | HeNe   | Wavelength   | Substrate                          |
| MY-25-650                                                       | MY-51-650                                                                    | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | Diode  | UV           | UV fused silica                    |
| MY-25-670                                                       | MY-51-670                                                                    | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | Diode  | VIS-NIR-IR   | BK7                                |
| MY-25-780                                                       | MY-51-780                                                                    | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | Diode  | High power   | Fused silica                       |
| MY-25-810                                                       | MY-51-810                                                                    | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | Diode  | 0 1          |                                    |
| MY-25-830                                                       | MY-51-830                                                                    | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | Diode  | Mechanical S | pecifications                      |
| MY-25-850                                                       | MY-51-850                                                                    | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | Diode  | Diameter     | +0, -0.1 mm                        |
| MY-25-980                                                       | MY-51-980                                                                    | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | Diode  | Thickness    | ±0.1 mm                            |
| MY-25-1053                                                      | MY-51-1053                                                                   | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | Nd:YLF | Parallel     | 1-3'                               |
| MY-25-1064                                                      | MY-51-1064                                                                   | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | Nd:YAG |              |                                    |
| MY-25-1310                                                      | MY-51-1310                                                                   | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | Diode  | Optical Spec | fications                          |
| MY-25-1319                                                      | MY-51-1319                                                                   | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | Diode  | Flatness     | <sup>1</sup> /20-wave              |
| MY-25-1540                                                      | MY-51-1540                                                                   | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | Diode  | Polish, both | sides <sup>10</sup> / <sub>5</sub> |
| MY-25-2010                                                      | MY-51-2010                                                                   | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | Tm:YAG |              |                                    |
| MY-25-2100                                                      | MY-51-2100                                                                   | 99.8%       | 10%        | 500 MW/cm <sup>2</sup> | Ho:YAG |              |                                    |

\*Bandwidth shown is at  $\pm$  5% of peak. \*\*Power Rating based on 20 n-sec pulses, 20 Hz,

Maximum Reflectors MX-Series

Substrate

Fused silica

+0, -0.1 mm

±0.1 mm

1/20-wave

10⁄5

1-3'

BK7

**Mechanical Specifications** 

**Optical Specifications** 

Polish, both sides

UV fused silica

Wavelength

VIS-NIR-IR

High power

Diameter

Thickness

Parallel

Flatness

UV

# **Partial Reflectors and Beamsplitters**

## Partial Reflectors & Output Couplers, 0°

| 1" dia. X <sup>1</sup> /4"<br>Wavelength (nm)<br>Catalog Number | 2" dia. X <sup>1</sup> / <sub>4</sub> "<br>Wavelength (nm)<br>Catalog Number | Bandwidth*         | Power<br>Rating**      | Laser  |
|-----------------------------------------------------------------|------------------------------------------------------------------------------|--------------------|------------------------|--------|
| MT-25-266-R/T                                                   | MT-51-266-R/T                                                                | 10%                | 300 MW/cm <sup>2</sup> | Nd:YAG |
| MT-25-351-R/T                                                   | MT-51-351-R/T                                                                | 10%                | 300 MW/cm <sup>2</sup> | XeF    |
| MT-25-355-R/T                                                   | MT-51-355-R/T                                                                | 10%                | 300 MW/cm <sup>2</sup> | Nd:YAG |
| MT-25-488-R/T                                                   | MT-51-488-R/T                                                                | 10%                | 500 MW/cm <sup>2</sup> | Ar     |
| MT-25-514-R/T                                                   | MT-51-514-R/T                                                                | 10%                | 500 MW/cm <sup>2</sup> | Ar     |
| MT-25-532-R/T                                                   | MT-51-532-R/T                                                                | 10%                | 500 MW/cm <sup>2</sup> | Nd:YAG |
| MT-25-633-R/T                                                   | MT-51-633-R/T                                                                | 10%                | 500 MW/cm <sup>2</sup> | HeNe   |
| MT-25-780-R/T                                                   | MT-51-780-R/T                                                                | 10%                | 500 MW/cm <sup>2</sup> | Diode  |
| MT-25-810-R/T                                                   | MT-51-810-R/T                                                                | 10%                | 500 MW/cm <sup>2</sup> | Diode  |
| MT-25-830-R/T                                                   | MT-51-830-R/T                                                                | 10%                | 500 MW/cm <sup>2</sup> | Diode  |
| MT-25-850-R/T                                                   | MT-51-850-R/T                                                                | 10%                | 500 MW/cm <sup>2</sup> | Diode  |
| MT-25-980-R/T                                                   | MT-51-980-R/T                                                                | 10%                | 500 MW/cm <sup>2</sup> | Diode  |
| MT-25-1053-R/T                                                  | MT-51-1053-R/T                                                               | 10%                | 500 MW/cm <sup>2</sup> | Nd:YLF |
| MT-25-1064-R/T                                                  | MT-51-1064-R/T                                                               | 10%                | 500 MW/cm <sup>2</sup> | Nd:YAG |
| MT-25-1310-R/T                                                  | MT-51-1310-R/T                                                               | 10%                | 500 MW/cm <sup>2</sup> | Diode  |
| MT-25-1319-R/T                                                  | MT-51-1319-R/T                                                               | 10%                | 500 MW/cm <sup>2</sup> | Diode  |
| MT-25-1540-R/T                                                  | MT-51-1540-R/T                                                               | 10%                | 500 MW/cm <sup>2</sup> | Diode  |
| *Bandwidth shown is at .                                        | 5% of peak **Power Bati                                                      | ng based on 20 n-s | sec pulses 20 Hz       |        |

| Wavelength                  | Substrate        |
|-----------------------------|------------------|
| UV                          | UV fused silica  |
| VIS-NIR-IR                  | BK7              |
| High power                  | Fused silica     |
| Mechanical Specific         | ations           |
| Diameter                    | +0, -0.1 mm      |
| Thickness                   | ±0.1 mm          |
| Parallel                    | 1-3'             |
| <b>Optical Specificatio</b> | ns               |
| Flatness                    | 1/20-wave        |
| Polish, both sides          | 10/5             |
|                             |                  |
| To specify Split Ratio      | os when ordering |
| R/T                         | For example      |
| 04/96±1%                    | MT-25-1064-04/96 |
| 30/70±5%                    | MT-25-1064-30/70 |



MT-25-1064-40/60

MT-25-1064-50/50 MT-25-1064-60/40

MT-25-1064-90/10

40/60±5%

50/50±5%

60/40±5% 90/10±3%

### **Beamsplitters, 45°**

| 1" dia. X <sup>1</sup> /4"<br>Wavelength (nm)<br>Catalog Number | 2" dia. X <sup>1</sup> /4"<br>Wavelength (nm)<br>Catalog Number | Bandwidth*        | Power<br>Rating**      | Laser  |
|-----------------------------------------------------------------|-----------------------------------------------------------------|-------------------|------------------------|--------|
| MS-25-193-R/T-pol                                               | MS-51-193-R/T-pol                                               | 10%               | 300 MW/cm <sup>2</sup> | ArF    |
| MS-25-212-R/T-pol                                               | MS-51-212-R/T-pol                                               | 10%               | 300 MW/cm <sup>2</sup> | Nd:YAG |
| MS-25-248-R/T-pol                                               | MS-51-248-R/T-pol                                               | 10%               | 300 MW/cm <sup>2</sup> | KrF    |
| MS-25-266-R/T-pol                                               | MS-51-266-R/T-pol                                               | 10%               | 300 MW/cm <sup>2</sup> | Nd:YAG |
| MS-25-325-R/T-pol                                               | MS-51-325-R/T-pol                                               | 10%               | 300 MW/cm <sup>2</sup> | HeCd   |
| MS-25-351-R/T-pol                                               | MS-51-351-R/T-pol                                               | 10%               | 300 MW/cm <sup>2</sup> | XeF    |
| MS-25-355-R/T-pol                                               | MS-51-355-R/T-pol                                               | 10%               | 300 MW/cm <sup>2</sup> | Nd:YAG |
| MS-25-488-R/T-pol                                               | MS-51-488-R/T-pol                                               | 10%               | 500 MW/cm <sup>2</sup> | Ar     |
| MS-25-514-R/T-pol                                               | MS-51-514-R/T-pol                                               | 10%               | 500 MW/cm <sup>2</sup> | Ar     |
| MS-25-532-R/T-pol                                               | MS-51-532-R/T-pol                                               | 10%               | 500 MW/cm <sup>2</sup> | Nd:YAG |
| MS-25-633-R/T-pol                                               | MS-51-633-R/T-pol                                               | 10%               | 500 MW/cm <sup>2</sup> | HeNe   |
| MS-25-650-R/T-pol                                               | MS-51-650-R/T-pol                                               | 10%               | 500 MW/cm <sup>2</sup> | Diode  |
| MS-25-670-R/T-pol                                               | MS-51-670-R/T-pol                                               | 10%               | 500 MW/cm <sup>2</sup> | Diode  |
| MS-25-780-R/T-pol                                               | MS-51-780-R/T-pol                                               | 10%               | 500 MW/cm <sup>2</sup> | Diode  |
| MS-25-810-R/T-pol                                               | MS-51-810-R/T-pol                                               | 10%               | 500 MW/cm <sup>2</sup> | Diode  |
| MS-25-830-R/T-pol                                               | MS-51-830-R/T-pol                                               | 10%               | 500 MW/cm <sup>2</sup> | Diode  |
| MS-25-850-R/T-pol                                               | MS-51-850-R/T-pol                                               | 10%               | 500 MW/cm <sup>2</sup> | Diode  |
| MS-25-980-R/T-pol                                               | MS-51-980-R/T-pol                                               | 10%               | 500 MW/cm <sup>2</sup> | Diode  |
| MS-25-1053-R/T-pol                                              | MS-51-1053-R/T-pol                                              | 10%               | 500 MW/cm <sup>2</sup> | Nd:YLF |
| MS-25-1064-R/T-pol                                              | MS-51-1064-R/T-pol                                              | 10%               | 500 MW/cm <sup>2</sup> | Nd:YAG |
| MS-25-1310-R/T-pol                                              | MS-51-1310-R/T-pol                                              | 10%               | 500 MW/cm <sup>2</sup> | Diode  |
| MS-25-1319-R/T-pol                                              | MS-51-1319-R/T-pol                                              | 10%               | 500 MW/cm <sup>2</sup> | Diode  |
| MS-25-1540-R/T-pol                                              | MS-51-1540-R/T-pol                                              | 10%               | 500 MW/cm <sup>2</sup> | Diode  |
| MS-25-2010-R/T-pol                                              | MS-51-2010-R/T-pol                                              | 10%               | 500 MW/cm <sup>2</sup> | Ti:YAG |
| MS-25-2100-R/T-pol                                              | MS-51-2100-R/T-pol                                              | 10%               | 500 MW/cm <sup>2</sup> | Ho:YAG |
| *Bandwidth shown is at ± 5                                      | % of peak. **Power Rating                                       | g based on 20 n-s | sec pulses, 20 Hz,     |        |

| Wavelength                                                      | <b>Substrate</b>                          |
|-----------------------------------------------------------------|-------------------------------------------|
| UV                                                              | UV fused silica                           |
| VIS-NIR-IR                                                      | BK7                                       |
| High power                                                      | Fused silica                              |
| Mechanical Specification                                        | ns                                        |
| Diameter                                                        | +0, -0.1 mm                               |
| Thickness                                                       | ±0.1 mm                                   |
| Parallel                                                        | 1-3'                                      |
| <b>Optical Specifications</b><br>Flatness<br>Polish, both sides | <sup>1</sup> ⁄20-wave<br><sup>10</sup> ⁄5 |
| To Specify Split Ratios wh                                      | en ordering                               |

| R/T      | Polarization | For example        |
|----------|--------------|--------------------|
| 04/96±1% | U, S or P    | MS-25-1064-04/96-S |
| 30/70±5% | U, S or P    | MS-25-1064-30/70-U |
| 40/60±5% | U, S or P    | MS-25-1064-40/60-P |
| 50/50±5% | U, S or P    | MS-25-1064-50/50-U |
| 60/40±5% | U, S or P    | MS-25-1064-60/40-S |
| 90/10±3% | U, S or P    | MS-25-1064-90/10-P |
|          |              |                    |



## **Beamsplitters**

OFR manufactures and stocks standard Beamsplitter plates and prism cubes. As in all of our products, we will specially manufacture on a custom basis to customer's specifications.

## BANDWITH OR TRANSMITTANCE, which is more important?

#### **Metallic Coatings**

Metallic coatings are achromatic over an extremely wide spectral range. For example, our beamsplitters are designed for equal reflection and transmission when used with unpolarized light at 45°. However, when used with S-polarized light, the R/T ratio is approximately 60/40, and with P-polarized, it is approximately 40/60.

Absorption in the metallic coating is  $\frac{1}{3}$ , and it is seen that if reflection equals transmission, then R=T=33%.

Our standard metallic coating is vacuum-deposited inconel which forms a tough and relatively scratch-resistant film. It is recognized by its grey and neutral appearance, which is a sure sign of its achromaticity. PLATES PRISM CUBES Number SU-Series SCL-Series

Catalog

### Application

General Purpose Laser/Interferometer



Coating

Metallic

All-Dielectric

#### **Dielectric Coatings**

In general, dielectric coated beamsplitters have a narrower bandwidth than the metallic type, and are inherently of negligible absorption loss.

In general, dielectric coatings show much more effect upon the R/T ratio of polarized light than do metallic types. Our standard beamsplitters are designed for equal reflectance/transmittance split when used with unpolarized light. However, when used with S-polarized light, the R/T ratio is 70/30, and with P-polarized the split is 30/70.



## **Beamsplitters**

### **Beamsplitter Plates**

OFR manufactures GENERAL-PURPOSE BEAMSPLITTER PLATES for applications where critical imaging or wavefront requirements are not stringent. For laser and interferometric applications requiring the highest specifications, see our DIELECTRIC BEAMSPLITTERS, page OC-16.



### GENERAL-PURPOSE BEAMSPLITTER PLATES

Being thin, these Beamsplitter Plates are not sufficiently rigid to maintain flatness in all applications, and therefore are not intended for interferometry or applications requiring diffraction-limited performance.

| Catalog<br>Number | Achromatic<br>Range | Unpolarized<br>Split (R/T) | S-Polarized<br>Split (R/T) | P-Polarized<br>Split (R/T) | Dimensions        | Material  | Coating<br>Type |
|-------------------|---------------------|----------------------------|----------------------------|----------------------------|-------------------|-----------|-----------------|
| SU-13             | 200 nm - 2.5 µm     | "50/50" (33/33)            | 60/40                      | 40/60                      | 0.5" dia. x 1/16" | UV Silica | Metallic        |
| SU-25             | 200 nm - 2.5 µm     | "50/50" (33/33)            | 60/40                      | 40/60                      | 1" dia. x 1/16"   | UV Silica | Metallic        |
| SU-51             | 200 nm - 2.5 µm     | "50/50" (33/33)            | 60/40                      | 40/60                      | 2" dia. x 1/16"   | UV Silica | Metallic        |





## Beamsplitters Prism Cubes

### **Beamsplitter Prism Cubes**

OFR manufactures Prism Cube Beamsplitters using our AD-series Prisms (BK7 glass) with appropriate coatings. See page OC-30. For ordering information on our Prism Mounting Platform, See page OC-30.



The four outer surfaces are coated with our Broadband Multilayer Antireflection Coating with per surface reflectance of 0.5%. The interface between the prisms is a dielectric, achromatic beamsplitter coating which produces a 50/50 split  $\pm$  5% across the visible spectrum when used with unpolarized light. With P-polarized light the ratio of R/T is 30/70, and with S-polarized, 70/30, approximately.

With grade A glass and all dielectric coatings, the insertion loss is negligible. However, because the Prisms are cemented together, use with high-power lasers which may burn the cement should be avoided

For our POLARIZING BEAMSPLITTERS, please see page OC-24.



| Part Number | A (mm)         | All Faces  |
|-------------|----------------|------------|
| SCL-15      | 15.0 ± 0.1     | 1/10 -wave |
| SCL-25      | $25.4 \pm 0.1$ | 1/10 -wave |

| Catalog<br>Number | Spectral<br>Range | Split      | Size       | Material |
|-------------------|-------------------|------------|------------|----------|
| SCL-15-VIS        | 450 - 650 nm      | achromatic | 15 mm cube | BK7      |
| SCL-25-VIS        | 450 - 650 nm      | achromatic | 1"cube     | BK7      |
| SCL-15-VIR        | 550 - 780 nm      | achromatic | 15 mm cube | BK7      |
| SCL-25-VIR        | 550 - 780 nm      | achromatic | 1"cube     | BK7      |
| SCL-15-NIR        | 750 - 950 nm      | achromatic | 15 mm cube | BK7      |
| SCL-15-IR         | 1250 -1550 nm     | achromatic | 15 mm cube | BK7      |

For our POLARIZING BEAMSPLITTERS, please see page OC-24, or below.



### **Polarizing Beamsplitters** (See also Polarizing-State-Preserving Beamsplitter, next page)

Our prism-cube Polarizing Beamsplitters consist of our AD-Series right-angle prisms (see page OC-30) cemented together with dielectric coatings on all surfaces. Because these are cemented, they cannot be used with high-energy lasers which may damage the cemented interface. The p-polarized component is transmitted and the s-polarized is reflected at 90°. Extinction ratio of the transmitted p-component and reflected s-component is >2000:1.

See also page OC-24.

These broadband Polarizers cover the following spectral ranges.

| Spectrum        | Order as                   |
|-----------------|----------------------------|
| 435-650 nm      | VIS                        |
| 630-860 nm      | VNIR                       |
| 960-1064 nm     | YAG                        |
| 1310-1550 nn    | n IR                       |
| NOTE: When orde | ering, specify wavelength, |
| PSCL-13-NIR for | example.                   |

| Catalog<br>Number | Transmittance<br>p-component | Reflectance<br>p-component | Reflectance<br>s-component | Dimensions           |
|-------------------|------------------------------|----------------------------|----------------------------|----------------------|
| PSCL-4-λ          | >96%                         | <1.5%                      | >98%                       | 4.0 mm <sup>3</sup>  |
| PSCL-13-λ         | >96%                         | <1.5%                      | >98%                       | 12.7 mm <sup>3</sup> |

### **Broadband PSP\* Beamsplitters** \*Polarization-State-Preserving

The state of polarization (SOP) of a beam of light can be described in terms of its S and P components, and the phase angle between them. In many beamsplitter applications, it is desirable that there be no change in the SOP between the input and the output beams. However, it is a natural phenomenon that the SOP of the input beam will be modified at the beamsplitting boundary, for non-normal incidence.

Various attempts to preserve the SOP have been made, for example "non-polarizing" beamsplitters. However, because of limitations of traditional coating techniques, these merely maintain the S and P amplitudes but not the phase angle between them. In addition, they are characterized by narrow bandwidths and fields-of-view.

**THE OFR PSP BEAMSPLITTER** utilizes unique and proprietary technology. It is the only beamsplitter on the market that preserves the SOP of the input beam, and is characterized by wide bandwidths (50-100 nm) and wide fields-of-view ( $\geq$  5°). The PSP Beamsplitter produces a 50/50 split within 3% for both output beams, and preserves the SOP and phase angle of the polarized components of the input.

### **BEAMSLITTERS AND SOP**

Fresnel's reflection coefficients describe the state of polarization (SOP) of reflected light in terms of the intensities of its S and P components. When the angle of incidence is non-perpendicular, the SOP of the reflected light will be different from that of the incident light.

The descriptions of the two resultant split beams are derived from equations that relate the angle of incidence at the boundary surface and the indices of refraction of the incident and transmission media. See formulas on the second side of the front cover of this section.

#### For fiber-optic applications, see page FO-13 in FIBER-OPTIC PRODUCTS section.

#### **SPECIFICATIONS**

- $Rs = Ts = 50\% \pm 3\%$
- $Rp = Tp = 50\% \pm 3\%$
- Bandwidth:  $\lambda c \pm 50 100 \text{ nm}$
- Power: >400MW/cm<sup>2</sup>
- Custom ratios available

| Center (∖c)<br>Wavelength | Order as               |
|---------------------------|------------------------|
| 500 nm                    | VIS                    |
| 633 nm                    | VIR                    |
| 800 nm                    | NIR1                   |
| 980 nm                    | NIR2                   |
| 1310 nm                   | IR1                    |
| 1550 nm                   | IR2                    |
| NOTE: some wavelen        | gths under development |

#### **ORDERING INFORMATION**

| Catalog<br>Number                                          | Aperture |  |  |
|------------------------------------------------------------|----------|--|--|
| PSP-5-λ                                                    | 5 mm     |  |  |
| : when ordering, specify wavelength, or example PSP-5-IR2. |          |  |  |





# **UV Polarizers**

### **UV Polarizers (ROCHON, LOW POWER ONLY)**

We manufacture the classical Rochon Polarizers in crystal quartz and  $MgF_{2.}$  Low power only! Damage threshold is complex. Please Inquire.

#### SPECIAL NOTICE

**Significant power limitations** must be observed with PVR and PUR models. Do not use with unexpanded laser beams, as power density (beam cross-sectional

area) can cause decontacting of polarizer prisms. Subject is complex, please inquire or request bulletin "Deep UV Polarization".

See High Power UV Polarizers below.

### SPECIAL NOTICE

**Polarized input beams** can only be used with PVR polarizers.

**Unpolarized input beams** can be used with either PVR or PUR Polarizers.



N,T option Cell

W option Cell

| CHARACTERISTICS       |                               |
|-----------------------|-------------------------------|
| Extinction ratios     | 1 x 10 <sup>4</sup> or better |
| Transmittance         | 85-91%                        |
| Surface flatness      | better than 1/10-wave         |
| Transmitted wavefront | better than 1/4-wave          |
| □ Surface polish      | better than 1%                |
|                       |                               |



| Catalog<br>Number | Colinearity<br>of P-Ray | Aperture | Wavelength   | Separation of<br>P from S | Material         | Cell<br>Dimensions |
|-------------------|-------------------------|----------|--------------|---------------------------|------------------|--------------------|
| PVR-10-2-N        | ~5 min                  | 10 mm    | 157*, 193 nm | 2° (193 nm)               | MgF <sub>2</sub> | 1" dia. x 2"       |
| PVR-10-2-T        | ~1 min                  | 10 mm    | 157*, 193 nm | 2° (193 nm)               | MgF <sub>2</sub> | 1" dia. x 21/2"    |
| PVR-10-2-W        | ~10 sec                 | 10 mm    | 157*, 193 nm | 2° (193 nm)               | MgF <sub>2</sub> | 1" dia. x 21/2"    |
| PUR-10-2-N        | ~5 min                  | 10 mm    | 190 - 400 nm | 2.5° (193 nm)             | Quartz           | 1" dia. x 2"       |
| PUR-10-2-T        | ~1 min                  | 10 mm    | 190 - 400 nm | 2.5° (193 nm)             | Quartz           | 1" dia. x 21⁄2"    |
| PUR-10-2-W        | ~10 sec                 | 10 mm    | 190 - 400 nm | 2.5° (193 nm)             | Quartz           | 1" dia. x 21/2"    |

NOTES: (1) 157 nm is still experimental; (2) All models: Laser power limitations. Request bulletin "Deep UV Polarization". AR coatings available on special request.

### **High Power UV Polarizers**

### CHARACTERISTICS

- P-Pol output beam
- Extinction ratios
- □ Transmittance
- Surface flatness
- Transmitted wavefront
- □ Surface polish



Air-spaced PSIL PSV-10

parallel to input beam within 10 minutes. better than 10<sup>5.</sup> >95% without AR coatings (incident beam at ~Brewster's Angle). better than 1/10 wave. better than 1/4 wave full aperture. better than 1% wave.

The subject of power limitation is complex. Please inquire.



Air-spaced PSV, PSU are mounted on H-A-51X platform for post mounting. See page OC-30.

| Air-spaced | P50, | PSV-10 |  |
|------------|------|--------|--|
|            |      |        |  |

| Catalog            |                | Optimum        | Design       | Separation  |                  | Compensating     |         |
|--------------------|----------------|----------------|--------------|-------------|------------------|------------------|---------|
| Number             | Aperture       | Laser λ        | Spectrum     | of P from S | Material         | Prism            | Off-Set |
| PSV-10-2-λ         | 10 mm          | 157*- 193 nm   | 150 - 200 nm | ~2 °        | MgF <sub>2</sub> | CaF <sub>2</sub> | ~6 mm   |
| PSU-10-2-λ         | 10 mm          | 193 - 355 nm   | 150 - 400 nm | ~2.5°       | Quartz           | UV Quartz        | ~6 mm   |
| *157 nm is still e | xperimental. P | lease inquire. |              |             |                  |                  |         |
| λ: specify wavele  | ength in nm w  | hen ordering.  |              |             |                  |                  |         |

# High-Transmittance Laser Polarizers

### **Medium Power**

| SPECIFICATI        | ONS            | Power Bating*         | Transmittance |
|--------------------|----------------|-----------------------|---------------|
|                    | Opecardin      | Tower Hading          |               |
| VIS                | 450 - 675 nm   | 25 MW/cm <sup>2</sup> | ≥98%          |
| VNIR               | 620 - 860 nm   | 25 MW/cm2             | ≥98%          |
| NIR                | 700 - 950  nm  | 25 MW/cm2             | >98%          |
|                    | 700 - 950 1111 |                       | >0.00%        |
| IR                 | 1250 - 1550 nm | 25 MW/cm <sup>2</sup> | 29070         |
| *20 n-s pulses, 20 | ) Hz.          |                       |               |
|                    |                |                       |               |

| Catalog<br>Number | Aperture | Extinction         |
|-------------------|----------|--------------------|
| PE-6-λ            | 6 mm     | ≥5x10 <sup>5</sup> |
| ΡΕ-8-λ            | 8 mm     | ≥5x10 <sup>5</sup> |
| ΡΕ-10-λ           | 10 mm    | ≥5x10 <sup>5</sup> |
|                   |          |                    |

PE-10-X 10 mm  $\geq$ 5X10<sup>3</sup> When ordering, specify wavelength, for example PE-10-VIS.

### **High Power**

| SPECIFICATIONS Transmittance |                |                        |          |  |
|------------------------------|----------------|------------------------|----------|--|
| $\lambda$ Order as           | Spectrum       | Power Rating*          | of P-Ray |  |
| NUV                          | 350 - 500 nm   | 100 MW/cm <sup>2</sup> | ≥90%     |  |
| VIS                          | 450 - 650 nm   | 100 MW/cm <sup>2</sup> | ≥90%     |  |
| VIR                          | 500 - 750 nm   | 100 MW/cm <sup>2</sup> | ≥95%     |  |
| NIR                          | 700 - 900 nm   | 100 MW/cm <sup>2</sup> | ≥97%     |  |
| TIS2                         | 780 - 980 nm   | 100 MW/cm <sup>2</sup> | ≥97%     |  |
| YAG                          | 1030 - 1100 nm | 200 MW/cm <sup>2</sup> | ≥97%     |  |
| IR                           | 1250-1600 nm   | 100 MW/cm <sup>2</sup> | ≥97%     |  |
| *20 n-s pulses 2             | 0 Hz.          |                        |          |  |

| Catalog<br>Number            | Aperture                                | Extinction                |
|------------------------------|-----------------------------------------|---------------------------|
| PEH-6-λ                      | 6 mm                                    | ≥5x10 <sup>5</sup>        |
| PEH-8-λ                      | 8 mm                                    | ≥5x10 <sup>5</sup>        |
| PEH-10-λ                     | 10 mm                                   | ≥5x10 <sup>5</sup>        |
| When ordering<br>PEH-10-YAG. | g, specify wavelen<br>*20 n-s pulses, 2 | gth, for example<br>0 Hz. |



Cell has escape windows on both sides.



Air-spaced calcite design

Surface flatness<1/10-wave</th>Transmitted wavefront<1/4-wave</th>Surface polish<20/10</th>



Air-spaced calcite design



### **Very High Power**

| Catalog | Aporturo | Power Pating*          | Transmittance | Extinction         | Cell Dime | ensions |
|---------|----------|------------------------|---------------|--------------------|-----------|---------|
| Tumber  | Aperture | Tower Hating           | - OTT - Hay   | Extinetion         | Diameter  | Lengui  |
| PQ-5-λ  | 5 mm     | 500 MW/cm <sup>2</sup> | ≥ 95%         | ≥5x10 <sup>5</sup> | 1.00"     | 1.44"   |
| PQ-7-λ  | 7 mm     | 500 MW/cm <sup>2</sup> | ≥ 95%         | ≥5x10 <sup>5</sup> | 1.00"     | 2.10"   |
| PQ-10-λ | 10 mm    | 500 MW/cm <sup>2</sup> | ≥ 95%         | ≥5x10 <sup>5</sup> | 1.12"     | 2.49"   |
| PQ-12-λ | 12 mm    | 500 MW/cm <sup>2</sup> | ≥ 95%         | ≥5x10 <sup>5</sup> | 1.37"     | 2.80"   |
| PQ-15-λ | 15 mm    | 500 MW/cm <sup>2</sup> | ≥ 95%         | ≥5x10 <sup>5</sup> | 1.37"     | 3.23"   |

\*20 n-s pulses, 20 Hz  $\lambda$ : When ordering, specify wavelength, for example PQ-15-1053.

| Surface Flatness      | <1/10-wave |
|-----------------------|------------|
| Transmitted wavefront | <1/10-wave |
| Surface Polish        | <11/5      |

Standard Wavelength 488 nm 532 nm 633 nm 1053 nm 1064 nm NOTE: UV \alpha's under development, please inquire.



Chevron design, double plate Brewster's Angle Plates, dielectric coated, low deviation <10 seconds.



### **Polarizing Beamsplitters, Broadband, High Extinction**

Our prism-cube Polarizing Beamsplitters consist of our AD-Series right-angle prisms (see page OC-30) cemented together with dielectric coatings on all surfaces. **Because these are cemented, they cannot be used with high-energy lasers which may damage the cemented interface.** 

The p-polarized component is transmitted and the s-polarized is reflected at 90°. Extinction ratio of the transmitted p-component and reflected s-component is >2000:1. These broadband Polarizers cover the following spectral ranges.

| Spectrum                                                 | Order as  |
|----------------------------------------------------------|-----------|
| 450-650 nm                                               | VIS       |
| 630-860 nm                                               | VNIR      |
| 960-1070 nm                                              | YAG       |
| 1310-1550 nm                                             | IR        |
| NOTE: When ordering, specify wa PSCL-13-NIR for example. | velength, |



| Catalog<br>Number | Transmittance<br>p-component | Reflectance<br>p-component | Reflectance<br>s-component | Dimensions           |
|-------------------|------------------------------|----------------------------|----------------------------|----------------------|
| PSCL-4-λ          | >96%                         | <1.5%                      | >98%                       | 4.0 mm <sup>3</sup>  |
| PSCL-13-λ         | >96%                         | <1.5%                      | >98%                       | 12.7 mm <sup>3</sup> |

### **General-Purpose Polarizers**

These are polarizing-film type Polarizers sandwiched between protective cover plates: UV grade fused silica for the UV series, and grade A glass for the visible and infrared series.

Our 15 mm series are mounted in our standard black-anodized cell, l"dia  $\times$  0.3" thick. A white line scribed on the diameter of one face of the cell indicates the polarizing axis of the plate.

2" series are available as the cemented sandwich, or optionally mounted in our H-51-64 Cell.

These can only be used with low power lasers.

These cannot be used with high power lasers or in proximity with heat sources such as xenon or other lamps.

### Walk-Off Polarizers

Walk-Off Polarizers are especially useful in fiber-optic applications to separate light of varying State of Polarization (SOP) into its S and P polarized components. These precision polished calcite blocks internally separate an input beam into the two polarized beams by 6° 14', yielding a 1:10 ratio of separation-to-length at output. It is possible to double the separation by putting two units in series.

To maintain complete separation at output of the S and P beams, do not exceed Maximum Beam Diameter at input.

Walk-Off Polarizers are available uncoated, or optionally with AR on both faces. Specify  $\lambda$  when ordering

For applications requiring larger beams or greater separation, contact OFR.

| Catalog<br>Number | Aperture      | Spectrum          | Cover<br>Plate   | Transmittance | Extinction |
|-------------------|---------------|-------------------|------------------|---------------|------------|
| PUM-15            | 15 mm dia.    | 275 - 500 nm      | UV Silica        | 20%           | 1000:1     |
| PUM-51            | 2" dia.       | 275 - 500 nm      | UV Silica        | 20%           | 1000:1     |
| PM-15             | 15 mm dia.    | 400 - 700 nm      | Glass            | 40%           | 10,000:1   |
| PM-51             | 2" dia.       | 400 - 700 nm      | Glass            | 40%           | 10,000:1   |
| H-51-64           | Cell for PUM/ | PM-51 21/2" diame | eter x 1/2" thic | k.            |            |



PUM/PM-15 are mounted in 1" diameter Cell. PUM/PM-51 are unmounted, or optionally in H-51-64 Cell.

| Catalog<br>Number           | Maximum*<br>Beam Dia. | HxWxL<br>Dimensions | Separation of<br>S and P<br>at Output | Tp & Ts | Extinction |
|-----------------------------|-----------------------|---------------------|---------------------------------------|---------|------------|
| ΡΒ-0.6-0.6-λ                | 0.6 mm.               | 4x4x6.3 mm          | 0.6 mm                                | ≥99%    | >60dB      |
| ΡΒ-1.0-1.0-λ                | 1.0 mm.               | 3x5x10 mm           | 1.0 mm                                | ≥99%    | >60dB      |
| $\lambda$ : for optional AR | coatings, specify v   | wavelength in nm.   |                                       |         |            |

\* Note: output beams will overlap if Maximum Beam Diameter is exceeded.



## **IR Polarizers**

### **Infrared Polarizers**

# MID-RANGE IR POLARIZER, 2.5-4 μm

Our Mid-IR Polarizer is analogous to the airspaced calcite polarizers (pages OC-24) except that it utilizes IR transmitting TiO<sub>2</sub> (rutile). For high-power laser applications, we will specially fabricate the Polarizer with side rejection windows. Please inquire.

| Catalog<br>Number                    | Aperture  | Transmittance | Power<br>Rating | Extinction | Field-of<br>View | Cell*<br>Dimension |
|--------------------------------------|-----------|---------------|-----------------|------------|------------------|--------------------|
| PT-8                                 | 8 mm dia. | ≥94%          | 10 W cw         | 5x10⁵      | ±1°              | 1" dia x 1" long   |
| *Same cell as PE-Series, page OC-23. |           |               |                 |            |                  |                    |

PLEASE NOTE: For infrared laser diode operating in the 1.5 µm region, see page OC-23, PE-X-IR.

### CO2 LASER POLARIZER, 10.6 µm

Our unique design utilizes ZnSe plates at Brewster's Angle. The standard unit is optimized for 10.6 µm.



| Catalog |          | Power   |            |               | Cell Dim | ensions |
|---------|----------|---------|------------|---------------|----------|---------|
| Number  | Aperture | Rating  | Extinction | Transmittance | Diameter | Length  |
| PHB-7   | 7 mm     | 1 kW cw | ≥3000:1    | ≥ 94%         | 2.49"    | 1.12"   |
| PHB-9   | 9 mm     | 1 kW cw | ≥3000:1    | ≥ 94%         | 2.80"    | 1.37"   |
| PHB-11  | 11 mm    | 1 kW cw | ≥3000:1    | ≥ 94%         | 3.23"    | 1.37"   |



## Depolarizers

These double crystal quartz wedges are so oriented as to cause a "depolarization" of polarized light, which is to say that if our Depolarizer is situated between a Polarizer and a rotating Analyzer, the resulting light transmitted through the Analyzer will not vary in intensity.

One type of depolarizer, the Lyot, does not have a "fast" or preferred axis. However, it is not entirely achromatic, and has wavelength periodicity in its depolarized spectrum.

Another type is the wedge depolarizer. It is achromatic, but has a preferred axis, meaning that this axis must be oriented at 45° with respect to the plane of polarization, thus making it unusable in applications wherein the plane of polarization varies in attitude.

The OFR Depolarizer is a proprietary design. It is achromatic throughout its

operating spectrum with no wavelength periodicity. Further, it does not possess a fast or preferred axis, so that it is effective in varying polarization applications. Being optically contacted, these can be used in the UV.

Performance is optimized with expanded beams, >6 mm diameter. Power rating is  $\sim$ 10W/cm<sup>2</sup>.

The DPU-15 is mounted in our standard retarder cell (see photo). The DPU-25 is not mounted. Antireflection coatings are optional.

| ANTIREFLECTION COATINGS                                          |          |  |  |  |
|------------------------------------------------------------------|----------|--|--|--|
| Spectrum                                                         | Order as |  |  |  |
| 325-500 nm                                                       | NUV      |  |  |  |
| 450-650 nm                                                       | VIS      |  |  |  |
| 700-900 nm                                                       | NIR      |  |  |  |
| 980-1660 nm                                                      | YAG      |  |  |  |
| 1310-1550 nm                                                     | IR       |  |  |  |
| NOTE: When ordering, specify wavelength, DPU-25-NIR for example. |          |  |  |  |

\_\_\_\_

| Catalog<br>Number | Aperture   | Spectrum      |
|-------------------|------------|---------------|
| DPU-15            | 15 mm dia. | 190 nm-2.5 μm |
| DP0-25            | i dia.     | 190 nm-2.5 µm |



DPU-15, mounted in cell. DPU-25, is not mounted

# Laser Retarders (Waveplates)

We fabricate these from selected natural and synthetic crystalline quartz, and other crystals depending upon wavelength.

All of our quartz Retarders are multilayer antireflection coated on both sides so that transmittance exceeds 99% at the design wavelength. Precision of retardation is guaranteed to be within 1/4% of design value. Transmitted wavefront is better than 1/10-wave across the full aperture. We calibrate every Retarder which is shipped out. We will furnish upon request, and at no additional charge, the calibrated value of any plate.

Aperture is 15 mm in 1" cell with scribed line indicating slow axis. Surface quality 10/5 or better, flatness better than 1/20 wave, parallel better than 2 seconds.



#### **MULTIPLE-ORDER RETARDERS, Crystalline quartz**

This is the single plate Retarder, and is no more nor less accurate than the zero order type under ordinary laboratory conditions. They will display more sensitivity to temperature change than the zero-order type. These Retardation Plates are precision polished to achieve the desired retardation at the desired wavelength. Aperture is 15 mm.

The high dispersion of refraction index at shorter wavelengths narrows both

angular aperture and bandwidth. Thus, we limit our multiple-order Retarders to 400 nm and longer wavelengths. For UV excimer lasers, we recommend our more tolerant zero-order Retarders (see next page).

Both sides are AR coated.

We manufacture Retarders from 3.6  $\mu m$  to 7.0  $\mu m$  on a custom basis in MgF\_2 crystal. Please inquire.

Change in phase retardation ( $\Delta \varphi$ ) relates to bandwith, field of view and temperature change, using a 1 mm thick plate. Temperature stability describes the change in phase retardation per °C of temperature change.

| Material   | Crystal quartz |
|------------|----------------|
| Retardance | ±1⁄2%          |
| Parallel   | 1 second       |

### Half-wave

| Catalog<br>Number &<br>Wavelegth                         | Bandwidth        | Field<br>of View | Temperature<br>Stability<br>_(∆¢/°C)_ |  |  |
|----------------------------------------------------------|------------------|------------------|---------------------------------------|--|--|
| RM-1/2-488                                               | ±0.1 nm          | ±1.3°            | 0.019                                 |  |  |
| RM-1/2-514                                               | ±0.2 nm          | ±1.4°            | 0.019                                 |  |  |
| RM-1/2-633                                               | ±0.2 nm          | ±1.6°            | 0.018                                 |  |  |
| RM-1/2-780                                               | ±0.4 nm          | ±1.8°            | 0.018                                 |  |  |
| RM-1/2-980                                               | ±0.6 nm          | ±2.0°            | 0.017                                 |  |  |
| RM-1/2-1053                                              | ±0.7 nm          | ±2.1°            | 0.017                                 |  |  |
| RM-1/2-1064                                              | ±0.7 nm          | ±2.1°            | 0.016                                 |  |  |
| RM-1/2-1310                                              | ±1.0 nm          | ±2.3°            | 0.016                                 |  |  |
| RM-1/2-1480                                              | ±1.3 nm          | ±2.4°            | 0.015                                 |  |  |
| RM-1/2-1550                                              | ±1.7 nm          | ±2.7°            | 0.015                                 |  |  |
| RM-1/2-1560                                              | ±1.7 nm          | ±2.7°            | 0.014                                 |  |  |
| *Value assumes a tolerable phase retardation error of 1% |                  |                  |                                       |  |  |
| MANY MORE WAV                                            | ELENGTHS IN STOC | K. IF NOT, WE'L  | L MAKE IT.                            |  |  |

### **Quarter-wave**

| Catalog<br>Number &<br>Wavelegth                         | Bandwidth | Field<br>of View | Temperature<br>Stability<br>_(∆¢/°C) |  |  |
|----------------------------------------------------------|-----------|------------------|--------------------------------------|--|--|
| RM-1⁄4-488                                               | ±0.1 nm   | ±1.0°            | 0.020                                |  |  |
| RM-1⁄4-514                                               | ±0.1 nm   | ±1.0°            | 0.019                                |  |  |
| RM-1⁄4-633                                               | ±0.1 nm   | ±1.0°            | 0.018                                |  |  |
| RM-1⁄4-780                                               | ±0.2 nm   | ±1.2°            | 0.018                                |  |  |
| RM-1⁄4-980                                               | ±0.3 nm   | ±1.4°            | 0.017                                |  |  |
| RM-1⁄4-1053                                              | ±0.4 nm   | ±1.5°            | 0.017                                |  |  |
| RM-1⁄4-1064                                              | ±0.4 nm   | ±1.5°            | 0.016                                |  |  |
| RM-1⁄4-1310                                              | ±0.5 nm   | ±1.6°            | 0.016                                |  |  |
| RM-1⁄4-1480                                              | ±0.7 nm   | ±1.8°            | 0.015                                |  |  |
| RM-1⁄4-1550                                              | ±0.7 nm   | ±1.8°            | 0.015                                |  |  |
| RM-1⁄4-1560                                              | ±0.7 nm   | ±1.8°            | 0.015                                |  |  |
| *Value assumes a tolerable phase retardation error of 1% |           |                  |                                      |  |  |
| MANY MORE WAVELENGTHS IN STOCK. IF NOT, WE'LL MAKE IT.   |           |                  |                                      |  |  |

# Laser Retarders

### ZERO-ORDER RETARDERS, Crystalline quartz

These are air-spaced, double plate Retarders. All surfaces are AR coated. These are no more nor less accurate than the multiple-order type under ordinary laboratory conditions. However, these have wider bandwidth and less sensitivity to temperature change than the multipleorder type. These Retardation Plates are within the "zeroeth" order of retardance, that is between  $(0\lambda-1\lambda)$ .

MaterialCrystaRetardance $\pm 1/2 \%$ Parallel2 sec.

Crystal quartz ±½% 2 seconds

### **Quarter-wave**

| Catalog<br>Number &<br>Wavelegth | Bandwidth         | Field<br>of View  | Temperature<br>Stability<br>(Δφ/°C) |
|----------------------------------|-------------------|-------------------|-------------------------------------|
| RZ-1⁄4-193                       | ± 1.9 nm          | ± 0.4°            | 0.00013                             |
| RZ-1⁄4-213                       | ± 2.1 nm          | ± 0.5°            | 0.00014                             |
| RZ-1⁄4-248                       | ± 2.5 nm          | ± 0.6°            | 0.00018                             |
| RZ-1⁄4-266                       | ± 2.6 nm          | ± 0.6°            | 0.00022                             |
| RZ-1⁄4-308                       | ± 3.1 nm          | ± 0.6°            | 0.00026                             |
| RZ-1⁄4-325                       | ± 3.2 nm          | ± 0.7°            | 0.00029                             |
| RZ-1⁄4-351                       | ± 3.5 nm          | ± 0.7°            | 0.00029                             |
| RZ-1⁄4-442                       | ± 4.4 nm          | ± 0.8°            | 0.00029                             |
| RZ-1⁄4-488                       | ± 4.8 nm          | ± 0.8°            | 0.00029                             |
| RZ-1⁄4-514                       | ± 5.1 nm          | ± 0.9°            | 0.00029                             |
| RZ-1⁄4-532                       | ± 5.3 nm          | ± 0.9°            | 0.00030                             |
| RZ-1⁄4-633                       | ± 6.3 nm          | ± 1.0°            | 0.00030                             |
| RZ-1⁄4-670                       | ± 6.6 nm          | ± 1.0°            | 0.00030                             |
| RZ-1⁄4-780                       | ± 7.7 nm          | ± 1.1°            | 0.00031                             |
| RZ-1⁄4-830                       | ± 8.2 nm          | ± 1.1°            | 0.00031                             |
| RZ-1⁄4-852                       | ± 8.4 nm          | ± 1.1°            | 0.00031                             |
| RZ-1⁄4-980                       | ± 9.7 nm          | ± 1.2°            | 0.00032                             |
| RZ-1⁄4-1053                      | ± 10.4 nm         | ± 1.3°            | 0.00032                             |
| RZ-1⁄4-1064                      | ± 10.5 nm         | ± 1.3°            | 0.00032                             |
| RZ-1⁄4-1310                      | ± 13.0 nm         | ± 1.5°            | 0.00033                             |
| RZ-1⁄4-1480                      | ± 14.7 nm         | ± 1.6°            | 0.00033                             |
| RZ-1⁄4-1550                      | ± 15.4 nm         | ± 1.6°            | 0.00034                             |
| RZ-1⁄4-1560                      | ± 15.4 nm         | ± 1.6°            | 0.00034                             |
| *Value assumes                   | a tolerable phase | retardation error | r of 1%                             |
| REALIZY REAL PROVIDENT           |                   | ALC IN LIGHT MARK |                                     |

MANY MORE WAVELENGTHS IN STOCK. IF NOT, WE'LL MAKE IT.

## Half-wave

| Catalog        |                     | Field             | Temperature |
|----------------|---------------------|-------------------|-------------|
| Wavelegth      | Bandwidth           | of View           | (Δφ/°C)     |
| <br>RZ-½-193   | ± 1.9 nm            | $\pm 0.6^{\circ}$ | 0.00028     |
| RZ-½-213       | ± 2.1 nm            | ± 0.7°            | 0.00029     |
| RZ-1/2-248     | ± 2.5 nm            | ± 0.8°            | 0.00034     |
| RZ-1/2-266     | ± 2.6 nm            | ± 0.8°            | 0.00042     |
| RZ-1/2-308     | ± 3.1 nm            | ± 0.9°            | 0.00051     |
| RZ-1/2-325     | ± 3.2 nm            | ± 0.9°            | 0.00058     |
| RZ-1/2-351     | ± 3.5 nm            | ± 1.0°            | 0.00058     |
| RZ-1/2-442     | ± 4.4 nm            | ± 1.1°            | 0.00059     |
| RZ-1/2-488     | ± 4.8 nm            | ± 1.2°            | 0.00060     |
| RZ-1/2-514     | ± 5.1 nm            | ± 1.2°            | 0.00061     |
| RZ-1/2-532     | ± 5.3 nm            | ± 1.3°            | 0.00062     |
| RZ-1/2-633     | ± 6.3 nm            | ± 1.4°            | 0.00062     |
| RZ-1/2-670     | ± 6.6 nm            | ± 1.4°            | 0.00062     |
| RZ-1/2-780     | ± 7.7 nm            | ± 1.6°            | 0.00062     |
| RZ-1/2-830     | ± 8.2 nm            | ± 1.6°            | 0.00063     |
| RZ-1/2-852     | ± 8.4 nm            | ± 1.7°            | 0.00063     |
| RZ-1/2-980     | ± 9.7 nm            | ± 1.8°            | 0.00063     |
| RZ-1/2-1053    | ± 10.4 nm           | ± 1.8°            | 0.00064     |
| RZ-1/2-1064    | ± 10.5 nm           | ± 1.9°            | 0.00064     |
| RZ-1/2-1310    | ± 13.0 nm           | ± 2.1°            | 0.00064     |
| RZ-1⁄2-1480    | ± 14.7 nm           | ± 2.2°            | 0.00065     |
| RZ-1⁄2-1550    | ± 15.4 nm           | ± 2.3°            | 0.00065     |
| RZ-1/2-1560    | ± 15.4 nm           | ± 2.3°            | 0.00065     |
| *Value assumes | a tolerable phase r | etardation erro   | r of 1%     |
| MANY MORE WA   | VELENGTHS IN STO    | CK. IF NOT. WE'   | II MAKE IT  |

### **BROADBAND 1/2-WAVE RETARDERS FOR POLARIZATION ROTATION**

A ½-wave retarder will rotate the plane of polarization by an amount that is twice the angle between the retarder axis (the white scribed line on the Cell) and the polarization plane.

This Retarder is a combination of birefringent crystal plates, resulting in broadband phase retardation accurate within 1% across the designated spectrum.

With broadband AR coatings, these Retarders transmit >98%. Mounted in standard Cell.

Aperture is 15 mm.

| Catalog<br>Number     | Wavelegth                           | Field<br>of View | Temperature<br>Stability |
|-----------------------|-------------------------------------|------------------|--------------------------|
| RMA-1/2-NIR1          | 600-950 nm                          | >±2°             | <0.1 nm/°C               |
| RMA-1/2-NIR2          | 780-1170 nm                         | >±2°             | <0.1 nm/°C               |
| RMA-1/2-IR            | 1250-1560 nm                        | >±2°             | <0.1 nm/°C               |
| *Value assumes a tole | rable phase retardation error of 1% |                  |                          |



| Material   | Crystal quartz + MgF <sub>2</sub> |
|------------|-----------------------------------|
| Retardance | $\pm \frac{1}{2}\%$               |
| Parallel   | 2 seconds                         |

### MICA RETARDERS

OFR manufactures and stocks ½-wave and ¼-wave Retarders in common laser wavelengths, cemented between protective glass cover plates. We do not AR coat mica Retarders, as internal transmittance is ~85%. However, mica Retarders are very high quality plates, with uniform retardance across the aperture, and wavefront distortion <1/4-wave. Because of the natural absorptance of mica, insertion losses become quite high with increasing wavelength (the plate becomes thicker). Thus, for practicality, we do not recommend mica retarders beyond ~850 nm.

Mica Retarders are guaranteed to be accurate within 1% of peak value.

| λ/4-wave*<br>Catalog<br>Number | λ/2-wave*<br>Catalog<br>Number | Wavelength          | Bandwith | Field<br>of View | Temperature<br>Stability |
|--------------------------------|--------------------------------|---------------------|----------|------------------|--------------------------|
| RA-1/4 488                     | RA-1/2-488                     | 488 nm              | ± 6 nm   | >±2°             | <0.1 nm/°C               |
| RA-1⁄4 514                     | RA-1/2-514                     | 514 nm              | ± 6 nm   | >±2°             | <0.1 nm/°C               |
| RA-1/4 633                     | RA-1/2-633                     | 633 nm              | ± 6 nm   | >±2°             | <0.1 nm/°C               |
| RA-1/4 670                     | RA-1/2-670                     | 670 nm              | ± 6 nm   | >±2°             | <0.1 nm/°C               |
| RA-1⁄4 780                     | RA-1/2-780                     | 780 nm              | ± 6 nm   | >±2°             | <0.1 nm/°C               |
| *Value assumes                 | a tolerable phase              | e retardation error | of 1%    |                  |                          |

| Material   | Mica between glass |
|------------|--------------------|
| Retardance | ±1%                |
| Parallel   | 2 minutes          |

# **Broadband Retarders (Fresnel Rhombs)**

#### **FRESNEL RHOMBS**

The most achromatic of all Retarders are the Fresnel Rhombs. We manufacture both  $\frac{1}{4}$ -wave and  $\frac{1}{2}$ -wave models for the ultraviolet and the visible-near IR. Surface quality 10/5 or better, flatness better than  $\frac{1}{10}$  wave, parallel better than 10 seconds. **MOUNTING CELLS** are provided with the Fresnel Rhombs. Both cells have <sup>1</sup>/<sub>4</sub> -20 holes for standard bench post mounting.

The ½-Wave Retarders Mounting Cell also mounts into any 2" dia. mirror mount.

**Function of a 1/4-wave retarder** is to convert linearly polarized light, whose plane is at 45° to retarder axis, to circularly polarized.

**Function of a 1/2-wave retarder** is to rotate the plane of polarization. See BROADBAND 1/2-WAVE RETARDERS , page OC-27.



**RF-1/4** 



RF-1/2

| λ/4-wave*<br>Catalog<br>Number | λ/2-wave*<br>Catalog<br>Number | Wavelength   | Field<br>of View | Aperture | Material  |
|--------------------------------|--------------------------------|--------------|------------------|----------|-----------|
| RFU-1/4 UVB                    | RFU ½-UVB                      | 240-360 nm   | >±2°             | 10 mm    | UV Silica |
| RFU-1/4 NUV                    | RFU ½-NUV                      | 225-500 nm   | >±2°             | 10 mm    | UV Silica |
| RF-1/4 VIS                     | RF 1/2-VIS                     | 425-675 nm   | >±2°             | 10 mm    | Glass     |
| RF-1/4 VIR                     | RF 1/2-VIR                     | 550-780 nm   | >±2°             | 10 mm    | Glass     |
| RF-1/4 NIR                     | RF ½-NIB                       | 700-950 nm   | >±2°             | 10 mm    | Glass     |
| RF-1/4 IR                      | RF ½-IR                        | 1250-1560 nm | >±2°             | 10 mm    | Glass     |

\*Value assumes a tolerable phase retardation error of 1%





1/2 - Wave

### **Variable Retarders and Soleil-Babinet Compensator**

Whereas the traditional application of the Soleil-Babinet Compensator is as an instrument for the analysis of polarized light, we have introduced its use as an adjustable retarder, with emphasis in the laser lab where many wavelengths are employed.

The heart of the OFR Variable Retarder and Soleil-Babinet Compensator is the set of crystal quartz wedges: a longer wedge moves with respect to a fixed shorter wedge. The combination of the wedges comprises a zero-order retarder which is adjustable from 0 to  $2\pi$  of phase retardation at any wavelength from 190 nm to 1.0 µm. Operation at longer wavelengths is possible, however at less than  $2\pi$  of phase retardation. These instruments are useable with high-power lasers, and available upon request with antireflection coatings.

The fast axis of the Retarder is parallel to the long base of the instrument. In operation, the plane of polarization will normally be at  $\pm 45^{\circ}$  with respect to this axis.

The S-B Compensator is actually a variable retarder that can be adjusted from 0 to  $2\pi$  of phase retardation. When used as the Variable Retarder, a 2" diameter x  $\frac{1}{2}$ " black-anodized aluminum plate is attached on the rear face of the instrument. This plate fits into any standard 2" mirror mount, which allows full rotation to correspond to any plane of polarization orientation.

For full capability as a classic Soleil-Babinet Compensator, the instrument is mounted onto the Divided Circle Rotator which allows full  $360^{\circ}$  of rotation, with locking at any angle therein, as well as 2-axis tilting. It has the additional feature of  $\pm 45^{\circ}$  detents for ease of setting.

ELECTRONIC DIGITAL READOUT is a feature of the micrometer actuator. This, along with "zero reset" and memory, simplifies operation. An RS-232 Port can be accessed for data acquisition and processing. Resolution is 0.001 of the wavelength.

| Catalog<br>Number | Description       | Aperture |
|-------------------|-------------------|----------|
| RC-10             | Variable Retarder | 10 mm    |
| SB-10             | Soleil-Babinet    | 10 mm    |
|                   | Compensator       |          |



**RC-10 Variable Retarder** 



SB-10 Soleil-Babinet Compensator

# Birefringent Filter Plates (Crystal Quartz)

We manufacture Birefringent Filter Plates in crystalline quartz to customer specifications. These are similar to our Retarders in that the crystal axis is parallel to the face of the plates.

Wavefront distortion of each plate is better than  $\frac{1}{10}-\frac{1}{20}$  wave, with parallelism of the faces better than 1 second of arc.

Birefringent Filters are used in dye laser tuning.

We manufacture Birefringent Filter Plates on a custom basis. Please check our inventory.

## Prisms

OFR manufactures and stocks a wide variety of Prisms. In addition to our standard product line listed below, we will specially fabricate prisms to custom specifications.

We manufacture several standard Prisms in CaF<sub>2</sub> for use in the ultraviolet. Please Inquire.



#### **PRISM MOUNTING PLATFORM**

This black-anodized plate, 2 x 2", 1/2" thick, has a 1/4-20 threaded hole for mounting on a standard optical benchpost, and is intended for convenient mounting of Prisms and Beamsplitter Prism Cubes. In order to avoid possible strain which can be caused by clamping hardware, we prefer using a double-sided urethanesponge tape (supplied) for prism mounting.

Description

Prism Mounting Platform

Catalog Number

H-A-51X



### RIGHT ANGLE PRISMS

The 45-45-90 degree Prism is the most commonly purchased of all our Prisms, and has several applications: to produce 90° reflection of light, to retroreflect light (Porro Prism), and even as a front-surface mirror with the hypotenuse aluminized.

The surfaces of these Prisms are flat within  $\frac{1}{10}$  -wave. Angles are within 3 minutes.

In addition, we select from our production those Prisms to be used as the two components in making our SCLseries Beamsplitter Cubes. Please see BEAMSPLITTERS, page OC-20.

#### MECHANICAL SPECIFICATIONS

| Dimensions       | +0,-0.1 mm     |  |  |
|------------------|----------------|--|--|
| Angles           | ±1-3 minutes   |  |  |
| Surface Flatness | 1/10-1/20 wave |  |  |
| Polish           | 10/5           |  |  |
| Bevels           | 0.3 mm X 45°   |  |  |
|                  |                |  |  |

| Catalog<br>Number | Square<br>Aperture | Material         | Transmission<br>Spectrum |
|-------------------|--------------------|------------------|--------------------------|
| ADV-15            | 15 mm              | CaF <sub>2</sub> | 130 nm - 9.6 µm          |
| ADV-25            | 1"                 | CaF <sub>2</sub> | 130 nm - 9.6 µm          |
| ADU-15            | 15 mm              | UV Silica        | 190 nm - 2.5 µm          |
| ADU-25            | 1"                 | UV Silica        | 190 nm - 2.5 µm          |
| AD-15             | 15mm<br>1"         | Glass            | 380 nm - 2.5 µm          |
| AD-23             | 2"                 | Glass            | 380 nm - 2.5 µm          |



## Prisms

## Pellin-Broca Prisms (Brewster's Angle 90°)

We fabricate Pellin-Broca in CaF<sub>2</sub> for the vacuum-ultraviolet, and in UV-grade fused silica for the ultraviolet and near-infrared. These are designed so that the entrance and exit faces are approximately at Brewster's angle for the design spectrum, thus minimizing reflection losses for p-polarized light.

| Number        | Aperture     | Material          | Spectrum      | Limit of<br>Transmission | Separation $\lambda_2 - \lambda_1^*$ | Angle   |
|---------------|--------------|-------------------|---------------|--------------------------|--------------------------------------|---------|
| ADBV-10       | 10 mm        | CaF <sub>2</sub>  | 130 nm-250 nm | 9.6 µm                   | ~3°                                  | 56°-59° |
| ADBV-20       | 20 mm        | CaF <sub>2</sub>  | 130 nm-250 nm | 9.6 µm                   | ~3°                                  | 56°-59° |
| ADBU-10       | 10 mm        | UV Silica         | 190 nm-425 nm | 2.5 µm                   | ~7°                                  | 56°-57° |
| ADBU-20       | 20 mm        | UV Silica         | 190 nm-425 nm | 2.5 µm                   | ~7°                                  | 56°-57° |
| ADB-10        | 10 mm        | BK7 Glass         | 380 nm-2.5 µm | 2.5 µm                   | ~2°                                  | 56°-57° |
| ADB-20        | 20 mm        | BK7 Glass         | 380 nm-2.5 µm | 2.5 µm                   | ~2°                                  | 56°-57° |
| NOTE: deviati | on is comple | x: Please inquire |               |                          |                                      |         |

 $^{*}\lambda_{2}$ - $\lambda_{1}$  refers to Design Spectrum extremes, for example 130/250 nm (ADBV).





| N | IECH | ANI | CAL | SP | EC | IFI | CA | <b>ATI</b> | ON | S |
|---|------|-----|-----|----|----|-----|----|------------|----|---|
| _ | -    | -   |     |    |    | -   |    |            |    |   |

| Dimensions       | +0,-0.1 mm     |
|------------------|----------------|
| Angles           | ±1-3 minutes   |
| Surface Flatness | 1/10-1/20 wave |
| Polish           | 10/5           |
| Bevels           | 0.3 mm X 45°   |
|                  |                |

### **Dispersing Prisms (Brewster's Angle )**

We fabricate Dispersing Prisms in CaF<sub>2</sub> for the vacuum-ultraviolet, in UV grade fused silica for the ultraviolet, and in high-dispersion glass for the visible and near-infrared. These are designed so that the entrance and exit faces are approximately at Brewster's angle for the design spectrum, thus minimizing reflection losses for p-polarized light.



### MECHANICAL SPECIFICATIONS

| Dimensions       | +0,-0.1 mm     |
|------------------|----------------|
| Angles           | ±1-3 minutes   |
| Surface Flatness | 1/10-1/20 wave |
| Polish           | 10/5           |
| Bevels           | 0.3 mm X 45°   |

| Catalog<br>Number | Square<br>Aperture | Material         | Design<br>Spectrum | Limit of<br>Transmission | $\frac{\text{Separation}}{\lambda_2 - \lambda_1 *}$ | Brewster's<br>Angle | Apex<br>Angle |
|-------------------|--------------------|------------------|--------------------|--------------------------|-----------------------------------------------------|---------------------|---------------|
| ABSV-15           | 15 mm              | CaF <sub>2</sub> | 130 nm-250 nm      | 9.6 µm                   | ~5°                                                 | 56°-59°             | 69.9°         |
| ABSV-25           | 1"                 | CaF <sub>2</sub> | 130 nm-250 nm      | 9.6 µm                   | ~5°                                                 | 56°-59°             | 69.9°         |
| ABSU-15           | 15 mm              | UV Silica        | 190 nm-425 nm      | 2.5 µm                   | ~12°                                                | 56°-57°             | 67.8°         |
| ABSU-25           | 1"                 | UV Silica        | 190 nm-425 nm      | 2.5 µm                   | ~12°                                                | 56°-57°             | 67.8°         |
| ABS-15            | 15 mm              | SF14 Glass       | 380 nm-2.5 µm      | 2.5 µm                   | ~10°                                                | 56°-57°             | 60.0°         |
| ABS-25            | 1"                 | SF14 Glass       | 380 nm-2.5 µm      | 2.5 µm                   | ~10°                                                | 56°-57°             | 60.0°         |
| NOTE: deviation   | is complex: Pleas  | se inquire.      |                    |                          |                                                     |                     |               |

 $\lambda_2-\lambda_1$  refers to Design Spectrum extremes, for example 130/250 nm (ABSV).

### **Coupling Prisms (Rutile & GGG)**

High index of refraction prisms are used for the coupling of light into films for the purpose of measuring film thickness and refractive index. We will gladly furnish a list of reference articles on the subject upon request.

For the measurement of films whose index is above 1.8, our rutile crystal (TiO<sub>2</sub>) prisms are used. Extraordinary index is 2.865.

For films below index 1.8, we offer our prism in gadolinium gallium garnet (GGG), with index 1.965.

All three prism faces are polished to  $1\!\!\!/_4\text{-wave flat, and the 90° corner is sharp (no bevel).}$ 

CAUTION: Prism coupling will cause scratching of the faces and chipping of the sharp edge.

#### Indices of Refraction for OFR Coupling Prisms

| Wavelength | GGG<br>Te/Tm | RU <sup>.</sup><br>No(Te) | TILE<br>N <sub>e</sub> (Tm) |
|------------|--------------|---------------------------|-----------------------------|
|            | 1 088        | 2 732                     | 3 0/2                       |
| 633 nm     | 1 965        | 2.702                     | 2 865                       |
| 830 nm     | 1 951        | 2.504                     | 2.000                       |
| 1064 nm    | 1 0//        | 2.010                     | 2.773                       |
| 1550 nm    | 1.036        | 2.473                     | 2.700                       |
| 1000 1111  | 1.350        | 2.400                     | 2.034                       |

#### **MECHANICAL SPECIFICATIONS**

| Dimensions       | +0,-0.1 mm     |
|------------------|----------------|
| Angles           | ±1-3 minutes   |
| Surface Flatness | 1/10-1/20 wave |
| Polish           | 10/5           |
| Bevels           | 0.3 mm X 45°   |
|                  |                |

| Catalog<br>Number | Angles    | Dimensions    | Material |
|-------------------|-----------|---------------|----------|
| ADT-6             | 45-45-90° | 6 x 6 mm base | Rutile   |
| AT-6              | 30-60-90° | 6 x 6 mm base | Rutile   |
| ADG-6             | 45-45-90° | 6 x 6 mm base | GGG      |





ADT-6, ADG-6 (no axis)

AT-6



Preparing boule of Rutile for fabrication into prisms.

# **Neutral Density Filters**

### **Neutral Density Filters**

OFR manufactures and stocks Neutral Density Filters in density steps from 0.1 to 3.0 These are neutral and accurate across their design range within 2-5% of absolute value.

The neutral density is achieved by a vacuum-deposited film of inconel metal. This is characterised by extreme achromaticity, however at the expense of absorption loss. Thus, these may possibly not be suitable for use with high-power lasers.

These are available individually or as a Boxed Set of Twelve Filters.

When requested, we will run a complete spectral transmittance graph of any purchased filter or filter set; please inquire.





#### ULTRAVIOLET NEUTRAL DENSITY FILTERS

These are in UV grade fused silica and designed for operation from 200-400 nm, although transmittance is to  $2.5 \ \mu m$ .

| Density &<br>Catalog Number | Approximate<br>Transmittance |
|-----------------------------|------------------------------|
| FDU-0.1                     | 0.79                         |
| FDU-0.2                     | 0.63                         |
| FDU-0.3                     | 0.50                         |
| FDU-0.4                     | 0.40                         |
| FDU-0.5                     | 0.32                         |
| FDU-0.6                     | 0.25                         |
| FDU-0.7                     | 0.20                         |
| FDU-0.8                     | 0.16                         |
| FDU-0.9                     | 0.13                         |
| FDU-1.0                     | 0.10                         |
| FDU-2.0                     | 0.01                         |
| FDU-3.0                     | 0.001                        |

### Dimensions

2" dia. x 1/16"

Catalog Number: FD-Set Boxed Set of Twelve Filters

### **NEUTRAL DENSITY FILTERS**

These are in glass and designed for operation in the visible spectrum, although neutral to  $2.5 \ \mu m$ .

| Density &<br>Catalog Number | Approximate<br>Transmittance |
|-----------------------------|------------------------------|
| FD-0.1                      | 0.79                         |
| FD-0.2                      | 0.63                         |
| FD-0.3                      | 0.50                         |
| FD-0.4                      | 0.40                         |
| FD-0.5                      | 0.32                         |
| FD-0.6                      | 0.25                         |
| FD-0.7                      | 0.20                         |
| FD-0.8                      | 0.16                         |
| FD-0.9                      | 0.13                         |
| FD-1.0                      | 0.10                         |
| FD-2.0                      | 0.01                         |
| FD-3.0                      | 0.001                        |
|                             |                              |

Dimensions

2" x 2" x 1⁄16"

Catalog Number: FD-Set Boxed Set of Twelve Filters





## Windows

OFR manufactures and stocks Windows which we use as substrates for our Dielectric Coated Laser Components (see page OC-14).

| MECHANICAL SPECIFICATIONS |             |  |  |  |  |
|---------------------------|-------------|--|--|--|--|
| Diameter:                 | +0-0.1 mm   |  |  |  |  |
| Thickness:                | ± 0.1 mm    |  |  |  |  |
| Parallelism:              | 1-3'        |  |  |  |  |
| Bevel:                    | 0.3mm x 45° |  |  |  |  |

| Catalog<br>Number | Spectral<br>Range              | Material              | Surface<br>Flatness | Dimensions           | Surface<br>Polish |
|-------------------|--------------------------------|-----------------------|---------------------|----------------------|-------------------|
| WV-25             | 130 nm - 9.6 µm                | CaF <sub>2</sub>      | 1/20-wave           | 1" dia. x 1/4"       | 20/10             |
| WV-51             | 130 nm - 9.6 µm                | CaF <sub>2</sub>      | 1/20-wave           | 2" dia. x 1⁄4"       | 20/10             |
| WU-25             | 190 nm - 2.5 µm                | UV Silica             | 1/20-wave           | 1" dia. x ¼"         | 10/5              |
| WU-51             | 190 nm - 2.5 µm                | UV Silica             | 1/20-wave           | 2" dia. x 1⁄4"       | 10/5              |
| W-25              | 380 nm - 2.5 µm                | BK7                   | 1/20-wave           | 1" dia. x 1⁄4"       | 10/5              |
| W-51              | 380 nm - 2.5 µm                | BK7                   | 1/20-wave           | 2" dia. x ¼"         | 10/5              |
| WQ-25             | 250 nm - 2.5 µm                | Fused Silica          | 1/20-wave           | 1" dia. x 1⁄4"       | 10/5              |
| WQ-51             | 250 nm - 2.5 µm                | Fused Silica          | 1/20-wave           | 2" dia. x 1⁄4"       | 10/5              |
| We will speci     | ially fabricate windows of all | sizes and materials a | and specifications  | on a custom basis; p | lease inquire.    |



## **Optical Contacting**

Optical contacting is a process by which two surfaces are adhered together through molecular attraction without the use of an adhesive.

It is a technique which is used in the precision optical shop when it is necessary to eliminate the dimensional uncertainty of wax or adhesive. For example, because optical parts are held down on the holding plate (block) usually by wax, it can be seen that the finite thickness of the wax not only can vary from piece to piece, but can also be wedged. When the specification calls for tight parallelism or angle tolerance, usually below one minute, the optician will employ optical contacting.

Another instance when optical contacting is utilized is when the specification requires a very tight tolerance on thickness, usually better than 0.02 mm. In the above examples, the optician will use the "contact plate" which is usually of fused silica or other transparent, low expansion material, and whose thickness is known to a precision of better than 0.001 mm. The surfaces of this plate are extremely parallel, ½ arc-second or better, with both sides very flat, at least ½0-wave.

The contacting process involves a technique of cleaning the contacting surface of this plate to an exceptionally high degree. The parts being manufactured have already been polished extremely flat on one side. This side is likewise cleaned. The optician then brings the two surfaces together, and this is where the optician's skill comes into action, and the two surfaces literally adhere. The parts are then "sealed" around the edges with shellac or lacquer to prevent the polishing

water from breaking the contact. The optician then grinds and polishes the parts to specification, knowing that there is zero dimension between the parts and the contact plate.

Certain finished products are contacted. These will usually be used in high-power laser applications in which optical cement could be damaged, or at wavelengths where optical cement will not transmit, such as in the ultraviolet. Most optical cements are opaque below 325 nm, although one brand transmits to 250 nm.

Optical contacting is a skill, and as in any art, one becomes proficient only with long practice.

# Solid Etalons

OFR manufactures Solid Etalons in fused silica which we will dielectrically coat as required. These 1" diameter plates are polished together as a 6" diameter cluster which is  $\frac{1}{20}$ -wave flat (the finest we can resolve). Thus, we assume the surfaces of each plate to be much flatter than the cluster. Surfaces are parallel to  $\leq 1$  arc second.

| Catalog<br>Number | Thickness               | Diameter                | Reflectance<br>Both Sides | Wavelength |
|-------------------|-------------------------|-------------------------|---------------------------|------------|
| IE-0.5            | 0.5 mm                  | 1.0"                    | 85-90%                    | 500-700 nm |
| IE-1.0            | 1.0 mm                  | 1.0"                    | 85-90%                    | 500-700 nm |
| IE-2.0            | 2.0 mm                  | 1.0"                    | 85-90%                    | 500-700 nm |
| IE-5.0            | 5.0 mm                  | 1.0"                    | 85-90%                    | 500-700 nm |
| IE-10.0           | 10.0 mm                 | 1.0"                    | 85-90%                    | 500-700 nm |
| We will coat b    | oth sides for other way | elengths. Please inquir | e                         |            |

Notes on IR Materials

Optical materials transmitting in the infrared are generally much more costly than their visible spectrum counterparts. Furthermore, there are many IR transmitting materials whose properties are comparatively very different. Therefore, it is usually the application which determines the kind of material to be used, along with other factors such as cost, need for antireflection coatings, hygroscopicity, abrasion resistance, and other mechanical properties.

Throughout this catalog, we list many IR transmitting components which we generally stock as standards. However, we will specially manufacture most optical components as required in the following materials.

### HYGROSCOPIC, LOW REFRACTIVE INDEX (AR COATINGS NOT NEEDED)

| Material | Useful<br>Spectrum | Comments                   | Comparative<br>Cost |
|----------|--------------------|----------------------------|---------------------|
| NaCl     | UV-16 µm           | IR lenses, windows, prisms | Moderate            |
| KCI      | UV-20 µm           | IR lenses, windows, prisms | Moderate            |
| KBr      | UV-25 µm           | IR lenses, windows, prisms | High                |
| Csl      | UV-50 µm           | IR lenses, windows         | High                |

# NON-HYGROSCOPIC, LOW REFRACTIVE INDEX (AR COATINGS NOT NEEDED)

| Material           | Useful<br>Spectrum | Comments                        | Comparative<br>Cost |
|--------------------|--------------------|---------------------------------|---------------------|
| CaF <sub>2</sub>   | VUV - 9.6 µm       | IR lenses, windows, prisms      | Moderate            |
| BaF <sub>2</sub> * | VUV - 11 µm        | IR lenses, windows, prisms      | Moderate            |
| MgF <sub>2</sub>   | VUV - 7 μm         | Birefringent, Polarizing optics | High                |
| LiF                | VUV - 5 µm         | VUV lenses, windows, prisms     | High                |
| ***                |                    |                                 |                     |

 $*BaF_2$  is not suitable for CO<sub>2</sub> laser applications.

#### NON-HYGROSCOPIC, HIGH REFRACTIVE INDEX (AR COATINGS NEEDED)

| Material                       | Useful<br>Spectrum | Comments                       | Comparative<br>Cost |
|--------------------------------|--------------------|--------------------------------|---------------------|
| Sapphire                       | UV-6 µm            | Used for mechanical properties | Very High           |
| As <sub>2</sub> S <sub>3</sub> | VIS-10 µm          | General IR optics              | Very High           |
| Ge                             | 2-20 µm            | Mostly CO <sub>2</sub> optics  | Very High           |
| Si                             | 2-10 µm            | General IR optics              | Very High           |
| KRS-5                          | VIS - 40 µm        | Mechanically poor qualities    | Very High           |
| ZnS                            | VIS -11 µm         | General IR optics, CO2 optics  | Very High           |
| ZnSe                           | VIS -16 µm         | General IR optics, CO2 optics  | Very High           |
| GaAs                           | VIS-12 µm          | General IR optics, CO2 optics  | Very High           |
| Ge-As-Se                       | VIS -12 µm         | General IR optics              | Very High           |